

 1

2

Go Succinctly

By

Mark Lewin

Foreword by Daniel Jebaraj

Copyright © 2017 by Syncfusion, Inc.

3

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Matt Duffield

Copy Editor: Courtney Wright

Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

Proofreader: John Elderkin

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

Chapter 1 Welcome ..10

Who is this book for? ..10

Code examples ..10

Acknowledgements ..10

Chapter 2 Introducing Go ..11

Welcome to Go...11

Slow builds ..11

Dependency management ...11

Static typing ...12

Concurrency ..12

Memory management ..12

Programmer consistency ...12

Tool chain ..12

Ease of learning ...13

What can I use Go for? ...13

Chapter 3 Let’s Go! ..14

The Golang website ...14

Your first Go program ...14

Setting up your machine ...18

Text editor ..19

The terminal ...19

5

The Go toolset ...19

The Go workspace ...21

Migrating “Hello, World!” ...22

Formatting Go source code ..23

Getting help with Go ...25

Documenting your own code..25

Recommended Go tool: Golint ...26

Chapter 4 Variables, Constants, and Assignments ...27

Statically vs. dynamically typed languages ...27

Variable assignment ...27

Scope ...29

Chapter 5 Basic Data Types ..32

Numeric data types ..32

Integers ...32

Floating-point numbers ..32

Working with numeric data ...33

Booleans ..34

Strings ..35

Common string operations ...36

Converting between numbers and strings ...37

Chapter 6 Control Structures ..40

Using if/else ...40

Looping with the for statement ..44

The switch statement ..46

Chapter 7 Arrays, Slices, and Maps ..50

Arrays ...50

6

Slices ...54

Maps ..59

Chapter 8 User-Defined Types ..65

A word on pointers ...65

Structs ..66

Methods ...68

Embedded types ..71

Interfaces ...73

The empty interface ...76

Type assertion ...77

Chapter 9 Concurrency ...79

Processes, threads, and concurrency ...79

Goroutines ..79

Gochannels ..81

Buffered channels ..85

Communicating on multiple channels ...87

Bringing it all together ...90

Chapter 10 Standard Packages ...95

The net/http package ..95

Input and output ...96

Strings ..97

Errors ...98

Containers ..99

Hashes and cryptography ... 102

Chapter 11 Go Further ... 104

7

 The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

8

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

Mark Lewin has been developing, teaching, and writing about software for more than 16 years.
His main interest is web development in general and web mapping in particular. While working
for ESRI, the world’s largest GIS company, he acted as a consultant, trainer, and course author,
and he was a frequent speaker at industry events. He currently works with a wide variety of
open source mapping technologies and a handful of relevant JavaScript frameworks, including
Node.js, Dojo, and jQuery.

Based in the UK, Mark currently teaches ArcGIS Server development for Geospatial Training
Services and is the author of the Google Maps API: Get Started course for Pluralsight. By day,
he writes MySQL developer courseware for Oracle.

Mark blogs about web mapping here and can be reached at mark@appswithmaps.net or on
Twitter at @gisapps.

This is Mark’s second book for Syncfusion. The first, Leaflet.js Succinctly, was published in
2016.

http://www.geospatialtraining.com/
http://www.geospatialtraining.com/
https://www.pluralsight.com/courses/google-maps-api-get-started
http://www.appswithmaps.net/
mailto:mark@appswithmaps.net
https://twitter.com/gisapps
https://www.syncfusion.com/resources/techportal/details/ebooks/leafletjs

10

Chapter 1 Welcome

Who is this book for?

This book is for any developer familiar with a programming language such as Java or C# who is
looking for a fast-paced but general introduction to Go.

While I cover a lot of ground in this short book, there are plenty of topics that I don’t have the
space to delve into. The Go language itself is quite small and concise, but there’s a lot of depth
to it, and the sheer volume of packages available in the Go Standard Library makes covering
everything impossible.

My goal is to give you enough Go to inspire you to learn more. Take what I give you, enhance it,
break it, work out how to fix it, and dive into the documentation and other resources available for
truly immersing yourself in the language.

Go is gaining significant traction for very good reason: it is an excellent language for solving
modern-day development problems. I predict that Go will become increasingly popular over the
next few years, and any investment you put into learning it now will be rewarded in the future.

Code examples

All code examples in this book can be found on Bitbucket.

Each sample can be identified by the code listing number given in this book. Furthermore, each
code file has a link to the Go Playground sandbox environment so that you can run it on
Google’s servers without installing Go on your own machine (if that’s what you want to do). The
only exceptions are samples that require external resources because you cannot link to them
from the Playground: the only communication that playground programs have with the outside
world is via standard output.

We will talk more about the Go Playground in Chapter 2.

Acknowledgements

I would like to thank the team at Syncfusion for inviting me to write this book, as well as the
editors and reviewers that made it look and read better than I could have managed on my own.
Any book project, even one as small as this, involves a significant time investment, and for me
that meant locking myself away in my office when I could have been spending time with my
lovely wife Amanda and our six wonderful children: Ben, Marie, Samuel, Malachy, Patrick, and
Grace. I’d like to extend my thanks to them for all their support and understanding. Ben, in
particular, gets an extra vote of thanks for helping me with proofreading.

So with all that out of the way, let’s talk about Go.

https://bitbucket.org/syncfusiontech/go-succinctly/src/c24d7609ecdfd79dcd0c07804e3602841eb93da7?at=master

11

Chapter 2 Introducing Go

Welcome to Go

Whether you’re an experienced programmer or a novice, you’re going to love Go.

Go was conceived and born at Google in 2007, when three veteran engineers (Robert
Griesemer, Rob Pike, and Ken Thompson) got together to build the language they wanted to
use for systems programming. Google is a unique company, and the problems it faces are
unique. With an untold number of computers, all networked together and running on different
platforms and being developed in many different programming languages, no systems
programming task is trivial at Google.

The rationale behind Go was to create a programming language that could be used to build
robust and hugely scalable software, abstracting away some of the complexity of working in an
environment using more traditional programming languages. Many people, myself included,
really enjoy programming in Go, but the idea was that even if it you didn’t fall in love with the
language, you could at least appreciate the sensible design decisions that went into it. Creating
Go was never about pushing completely new paradigms in programming language design; it
was all about building a great language for the sort of challenges programmers face today.

So what challenges did these engineers identify, and how were those met by Go?

Slow builds

Even though computers are much faster these days, software builds for many programmers are
still painfully slow. With Go, you can compile a substantial program in just a few seconds on a
single computer. Everything compiles to a single binary file. There is no interpreter (like
Python’s or JavaScript’s) and no reliance on a runtime environment like Java’s JVM.

Dependency management

Managing dependencies is a huge issue for programmers today, and the old “header file”
approach of languages such as C++ just doesn’t scale very well. As programs have grown in
size, working out when dependencies are no longer required has become very difficult.

Go’s dependency management is baked into the language itself. If a package is listed as a
dependency and no code within the program uses it, the Go compiler raises an error and no
further compilation occurs until the dependency is removed. This guarantees that there are
never any unwanted dependencies and keeps the code base lean. Go also builds dependent
packages before the packages that depend on them, leading to much faster compilation
because only a single file is opened by the compiler when an import occurs.

12

Static typing

“Hold on!” I hear you say. “Isn’t there a big backlash against static typing in so-called ’modern’
dynamically-typed languages like JavaScript and Python?”

Well yes, but dynamic typing comes with its own problems. With a statically typed language
such as C++ or Java, you must specify the type of the data stored by a variable. The compiler
checks variable assignments in your program and shouts at you if you’re trying to store data of
one type in a variable that only supports data of a different type. This can help weed out a lot of
silly errors early on and avoid some painful debugging later. But advocates of dynamically typed
languages applaud the flexibility and speed of development. Go offers the best of both worlds: it
is statically typed, but features of the language make it appear to have some of the benefits of a
dynamically typed language.

Concurrency

Concurrency means executing multiple routines simultaneously in order to speed up processing
and offload effort. It’s the way to make use of all those extra resources in the multicore CPUs
that are ubiquitous nowadays. In many programming languages, concurrency is an afterthought
and difficult to do well. Go provides great support for concurrent programming with Goroutines
and channels.

Memory management

Unlike many compiled languages, you don’t have to manage memory yourself. This has often
been the cause of very hard-to-debug memory leaks that gradually bring systems to a halt. C
and C++ are notorious for this: mismanaged memory leads to memory leaks, which are difficult
to debug and will eventually bring your application to a standstill. Go manages memory for you.
When resources are no longer required, Go’s garbage collector gets rid of them and releases
the memory back to the system.

Programmer consistency

Programmers will argue day and night about the best way to format code. With Go, there is no
need to argue about the virtue of tabs versus spaces or different commenting styles because
the Go guidelines make clear which way Go thinks you should do it. There’s even a tool that will
take your code and format it, Go-style, for you. All of the examples in this course have been run
through the Go formatter. You can either call it explicitly, or, in most IDEs and editors, you can
configure it to execute every time you save the file you are working on.

Tool chain

Go comes with many other out-of-the-box tools for documentation, testing, maintenance, and all
the other time-consuming tasks that programmers must deal with.

13

Ease of learning

Google uses of C-style syntax, making it easy for anyone with experience of programming in
other C-style languages such as Java, C#, and JavaScript to learn Go.

In short, Go is a modern programming language built to deal with modern programming
challenges. It is small, easy to learn, and hugely powerful. However, it’s not ideal for every type
of project. Let’s look at what Go is good at and where it is less useful.

What can I use Go for?

Go is good for:

• Network applications, web servers, and distributed systems in general. Go’s support
for concurrency is fantastic, and these applications rely on concurrency to scale well. Better
still, Go’s concurrency features are native to the language itself and not dependent on
external libraries. Support for other requirements, such as HTTP, are available in Go’s
standard library.

• Command-line applications and scripting. Everything in Go compiles to a single binary
file that can run lightning fast on just about any platform, with no external dependencies
unless you expressly require them. What’s more, Go programs can talk directly with C
libraries and make system calls to the operating system. These features make Go the ideal
choice for command-line applications and scripts.

Go is not so great at:

• Desktop and graphical user interface applications. Go’s strength at running on multiple
platforms is actually its downfall when it comes to writing desktop and GUI applications.
While there are bindings for GTK, a library called walk for Windows applications, and work
afoot at Google to build a cross-platform UI library called gxui, the Go community hasn’t
settled on an ideal approach for building GUI applications.

• Very low-level programming. Even though Go can make calls directly to operating system
functions, it’s not ideal for low-level work such as embedded systems and device drivers. A
lot of this has to do with its heavy reliance on the operating system. However, there is work
being done on a project called Ethos, which might make Go more viable for such
applications in the future.

Now that we know a bit about the rationale behind Go and its strengths and weaknesses, let’s
talk about the language itself.

14

Chapter 3 Let’s Go!

The Golang website

The Golang (short for Go Programming Language) website is your go-to resource (sorry,
couldn’t resist) for all things related to Go. From here, you can download the Go compiler and
tools, access online documentation, and read all about what’s new and wonderful in the world of
Go.

Check it out now. Visit the Golang website and introduce yourself to the Go Gopher, who is the
iconic mascot for the Go project. (And if you are really interested in the history behind the Go
Gopher, read this post on the Go project blog.)

Figure 1: The Golang Homepage

Your first Go program

You don’t even need to install Go to write your first Go program because you can try out Go
directly from the Golang website. Let’s do that now. After all, you might hate Go. I’d be very
surprised and disappointed if you did, but I don’t want to be the guy responsible for making you
install lots of cruft on your machine that you’ll never actually use. I’ll leave it to the PC vendors
to do that!

First, visit the Go Playground.

http://www.golang.org/
http://is.gd/xasMh9
http://play.golang.org/

15

Next, select everything in the code window and delete it.

Then, type the following as the first line of your new Go program:

package main

That’s it. No semicolons or other terminators required. But Go is a C-like language, and C and
its derivatives use semicolons to tell the compiler where one line ends and another begins. Go
uses semicolons too, but except for a few control structures, they don’t usually appear in the
source code. Instead, the lexer inserts them automatically as it scans your program looking for
new lines and inferring the end of statements from the tokens it finds, which means you don’t
have to worry about terminating your statements. That’s just one of the many things that Go
does to make your life easier.

That package statement you just entered tells the Go compiler that this code file will live in the

main package. Go organizes code into packages, and the most important package of all is

main, because that’s where your program will start. There are packages you write yourself, such

as this one, and packages that you import from other sources.

Within the main package is a function called main(), which should come as no surprise if you

have ever written any C or Java code. This is the entry point for your program.

So, press the return key a couple of times and enter:

func main() {

}

We’re going to write a simple program that writes a “Hello, world!” message to the screen. To do
that, we need to import a package from the Go standard library called fmt. In between your

package declaration and your main() function, enter the following:

import (

 "fmt"

)

Now go back to your main() function and enter the following statement:

fmt.Printf("Hello, World!\n")

That line of code uses the Printf() function in the fmt package to display a line of text on the

screen that is terminated by a new line character ('\n').

Let’s run it and see if it works. Just click the Run button at the top of the page and check the
program output at the bottom. If you see your “Hello World!” message, your program is working
fine. If not, compare your code to the screenshot in Figure 2.

16

Figure 2: The “Hello, world!” Program in the Go Playground

If everything worked as planned, your program was compiled on Google’s servers and
executed, displayed the “Hello, World!” message, and then exited. This process is extremely
fast because Go’s compiler is highly optimized. Yes, your program is only a few lines long and
pretty trivial, but as you start to write more sophisticated code, the Go compiler will surprise you
at just how fast it is—especially if you are a Java programmer.

I am reminded of an old joke at Java’s expense here:

“Knock! Knock!”
“Who’s there?”
“…”
“…”
“…”
“…”
“…”
“… Java!”

Now, I’d like you to break a couple of things just to get an idea of how Go works. First, delete
the fmt.Printf() statement and run the program again. This time you should see an error, as

shown in Figure 3. You’ll see the culprit line number highlighted in pink and an error message at
the bottom.

17

Figure 3: Unused Package Error

This is because Go, unlike many languages, keeps a strict eye on the packages you import and
how they are used in your program. Go doesn’t like you importing packages that you never use.
It considers that a waste of resources and hates it so much that it raises an error. This keeps
your programs nice and lean—not bloated by linked code that is never used.

Retype the line of code that prints the “Hello World!” message to your screen, but this time use
a lowercase p for printf() and run the program again.

Figure 4: Unknown Function Error

18

The Go compiler throws another error. That’s because Go is a case-sensitive language, and it
won’t forgive you if you get the capitalization wrong.

Fix up your program so that it’s working correctly.

Another thing to know about Go is the way it deals with strings. In most languages, strings are
just a bunch of bytes. In Go, they are “runes,” which are really just integer values mapped to
their Unicode counterparts. This makes it very easy to include foreign language characters in
Go strings (and you can even use them in function names if you are so inclined).

For example, if we wanted to write “Hello, World!” in Telegu, we don’t need to do anything
special to our code:

Figure 5: “Hello, World!” in Telegu

The Go Playground is a great place to experiment with the language, and you can even share
the results of your labors with others (just click the Share button). However, as soon as you are
ready to write something more substantial, you’re going to need to download the tools you
require to compile and execute code on your local machine.

Setting up your machine

There are a few things you need to set up on your machine before you’re ready to start writing
Go programs. The exact steps will depend on your operating system.

19

Text editor

You’ll need an editor in which to write your code. Any editor will do, but if you can find one that
supports syntax highlighting for Go, it will make life easier. You might have to do some Googling
to find the appropriate syntax highlighting language packages for your chosen editor, but doing
so will be worth it.

Atom or Sublime Text are very good cross-platform editors and have all sorts of add-ins you can
use to compile and format your code. The old diehards emacs and vim are equally, if not more,
capable. Ultimately, it’s up to you which text editor you use because Go itself doesn’t care.

If you’re familiar with a certain IDE, you might be able to adapt it to use Go. For example, the
IntelliJ IDEA platform has a plugin called go-ide.

I’m keeping things simple here and simply using a fairly simple text editor called TextWrangler
on my Mac. It’s not exciting, but it doesn’t get in the way, either. Equivalent programs for
Windows could be Notepad++, Notepad2, and PSPad, or, for Linux, Gedit, Geany, or Kate.

The terminal

The Go compiler and other tools are command-line applications, so you’ll need access to a
terminal program unless your fancy-schmancy editor can run the tools directly. This might be
good when you’re familiar with Go, but I’d suggest doing things via the command line when
you’re starting out because this gives you a better idea of how the tools work.

Windows

In Windows, you can open the terminal (or command prompt as it’s known) by bringing up the
Run dialog (hold down the Windows logo key+R) and then typing cmd.exe.

OS X

On a Mac, open Finder and navigate to Applications > Utility > Terminal. Pin it to the dock,
because you’ll be using it a lot in this book.

Linux

If you’re running Linux you are doubtless familiar with the command line already and don’t need
any help from me.

The Go toolset

You can download the Go tools from the Golang website. Find the picture of the gopher (it’s
very hard to miss) and click on the Download Go button beneath it. Choose the version for your
operating system from the “Featured Downloads” section. The current stable release of Go at
the time of writing is 1.6, and all samples in this book are based upon this version. However,
Google wants Go code to work across versions, so everything should still work if your version of
Go is not the same as mine.

http://www.go-ide.com/
http://www.golang.org/

20

If you’re on Windows or OS X, you can simply run the installer and you’re good to go.

If you’re on Linux, you can extract the .tar.gz file to /usr/local/go and no further setup is

required. If you insist on installing it somewhere else, you’ll need to set the $GOROOT

environment variable accordingly. Consult the README.md file within the installer package for full

instructions.

Test the installation by opening a terminal prompt and typing go. You should see a similar

output to what is shown in Figure 6. When you run go without any other arguments, it simply

lists the various tools and help available. You can see from the output that there are tools within
the toolset for compiling, running, and formatting Go code; looking up documentation; and all
the other tasks you will encounter as a Go programmer.

Figure 6: Checking the Installation of the Go Toolset

21

The Go workspace

In most programming environments, every code project has a separate workspace, each of
which may be under source control. Go takes a different approach in that Go programmers
usually keep all their Go code in a single workspace. Getting the structure of your workspace
just right is important because the Go toolset expects things to be in certain places and gets
very upset when you do things differently.

A Go workspace is simply a directory that contains three main subdirectories:

• src: Contains your Go source code files
• pkg: Contains packages
• bin: Contains executable programs

In practice, there will be further divisions within the src directory that map to different version

control repositories, but for now we’re going to keep things very simple.

Create a location on your machine for all your Go projects. This will be your workspace. For
example, mine is in the /Code/Go folder within my home directory (~/Code/Go). The only

requirement is that this must not be in the same path as your Go installation.

The Go tools need to know where to find your code, and they’ll use an environment variable
called GOPATH to do this. The GOPATH environment variable points to your Go workspace.

Use the following operating system-specific instructions to set the GOPATH. These are based on

my environment, so you’ll need to change /Code/Go to reflect the location of your own

workspace.

Windows

Open the command prompt and type the following:

setx GOPATH %USERPROFILE%\Code\Go

This sets GOPATH to C:\users\username\Code\Go on more recent versions of Windows. Older

versions might not support this command-line approach, but you can also set GOPATH from

within the Control Panel (System > Advanced > Environment Variables).

OS X and Linux

You’ll want to store the GOPATH setting so that your terminal remembers it. You usually do this in

~/.bash_profile. Enter the following command at the terminal:

echo 'export GOPATH=$HOME/<path to my folder>…' >> ~/.bash_profile

Exit the terminal, restart it, and enter the following command to ensure that the GOPATH setting

has been persisted:

env | grep GOPATH

This should display the current value of the GOPATH environment variable.

22

Migrating “Hello, World!”

Let’s take the “Hello, World!” program we created in the Go Playground and get it working on
our local machine.

First, within the workspace directory, create a new subdirectory called src and also one

beneath it called hello. Bear in mind that the directory paths you need might differ from mine if

your workspace is in a different location.

Windows

md src\hello

OS X and Linux

mkdir –p src/hello

Within /src/hello, create a file called main.go. Note that you can call this file whatever you

like, but because it is the location of our main() function, main.go seems as a good a name as

any.

Enter the “Hello, World!” code from the Go playground into the main.go file in your text editor of

choice and save it.

Code Listing 1

In order to run the program, you will need to use the go tool. Open your terminal, change to the

src/hello directory, and enter the following command:

go run main.go

This command compiles the main.go file and, if it is successful in doing so, launches it. If your

program displays “Hello, world!” in your terminal that means you have succeeded. Give yourself
a pat on the back. If it fails, look at the errors generated by the compiler and try to fix them in
your code before executing go run main.go again. If you manage it, give yourself an extra pat

on the back for your debugging skills.

package main

import (
 "fmt"
)

func main() {
 fmt.Printf("Hello, world!\n")
}

23

 Tip: For more information on setting up your workspace and the many different
compiler options available, see the excellent documentation on these topics here.

Formatting Go source code

Unlike many languages, Go is very picky about how you format your code. This gives you less
of a chance to show off your artistic nature, but it does prevent arguments during code reviews
at work and makes your code (and everyone else’s) easier to read and, therefore, to maintain.

Go code has rules (that you must obey) and conventions (that they want you to obey). This is
very different from Java and other languages derived from C. One of the biggest shocks
programmers from these languages discover when they come to Go is how Go enforces rules
on the use of curly braces.

In C and Java, when you have a block of code as part of a function or control structure (if, for,

etc.), these are contained by curly braces. The C or Java compilers don’t care whether the initial
brace appears. For example:

function myFunction() {

 if (loggingEnabled == true) {

 log.output("I'm in myFunction()");

 }

…

}

This code can equally be written like this:

function myFunction()

{

 if (loggingEnabled == true)

{

 log.output("I'm in myFunction()");

 }

…

}

But not in Go. Go insists that the opening brace is always on the same line as the statement
preceding it. Most C and Java programmers use this style anyway, but they are surprised when
Go raises an error if they depart from it.

https://golang.org/doc/code.html

24

Go also complains about the omission of curly braces when the body of a control structure
contains only one line of code. Go insists upon it. For example, the following approach is illegal
in Go:

 if zombieApocalypse == true

 fmt.Println("Run for the hills")

Instead, it should be written as:

 if zombieApocalypse == true {

 fmt.Println("Run for the hills")

 }

Where there are no rules there are conventions, such as:

• Go uses tabs rather than spaces to indent code.
• When you import multiple packages using an import statement, Go likes them to be

in alphabetical order.
• When you create custom types, Go likes the field names and types to be lined up

nicely.

Because these conventions are hard to remember at first, and because the creators of Go want
to make it easy for you to adopt their programming style, there is a tool called fmt in the toolset

you can use to ensure that your code is very “Go-like.”

Execute the tool from the command line as follows:

go fmt /path/to/your/package

For example, if this is the source file (hello.go):

package main

import "fmt"

func main() {

 i := 5

 fmt.Println((i))

 fmt.Printf("hello, world\n")

}

Then, after running go fmt hello.go, the output will appear as follows:

package main

import "fmt"

25

func main() {

 i := 5

 fmt.Println((i))

 fmt.Printf("hello, world\n")

}

Much nicer!

It’s good to get into this habit, especially when working on projects with other coders who will
expect your code to be formatted the “Go way.” You can include it in your build process, and
some editors have plugins that can automatically format your code each time you save a source
file.

Getting help with Go

No matter how great a coder you are, you can’t be expected to remember every intricacy of a
programming language, even one as concise as Go. You’re going to need help, and the help
documentation in Go is very useful.

There are two main ways to access help. First, you can visit the Documents link on the Golang
website. It contains an introduction, how-to guides and articles, and comprehensive reference
documentation. You can also catch up on the latest Go news with the Go blog and listen to a
number of recorded talks and presentations about Go. Also check out the forums, mailing lists,
and IRC channels available here.

You can also look up information about Go commands directly in Go itself. For example, to get
information about the entire fmt package, enter the following at a terminal prompt:

godoc fmt

To drill into information about a particular Go type, variable, constant, or a function such as
Printf(), enter the following:

godoc fmt Printf

If the documentation doesn’t provide the answers you need, that is because Go is an open
source project, which means you can go directly to the source code itself. However, I think you’ll
be pleased with the quality of the Go documentation.

Documenting your own code

You can also use the godoc tool to document your own packages. While this is beyond the

scope of this book, all it requires are comments within your code, formatted in special ways
depending on the type of information you are trying to impart. The syntax for creating comments
in Go is the same as other C-style languages:

https://golang.org/help/

26

// This is a line comment that will be ignored by the compiler

/* This is a block comment.
It can span several lines and
will also be ignored by the compiler. */

Get into the habit of adding comments to your code. It’s useful for other programmers, and also
for you when you revisit code you wrote a while ago and no longer understand it!

That concludes our crash course in writing, compiling, running, and getting help with Go code.
In subsequent chapters, we’ll dig into the features of the language itself.

Recommended Go tool: Golint

This is another tool that I find very useful. It’s not part of the standard toolset, but can be
installed from GitHub.

Golint is a linter for Go source code. It differs from go fmt in that go fmt reformats source

code, whereas Golint generates a list of what it perceives to be style misdemeanors. I find I

learn more about what Go expects from me stylistically when it tells me what’s wrong instead of
just reformatting my code for me.

Install Golint by running:

go get github.com/golang/lint/golint

For usage instructions, refer to the online documentation.

https://github.com/golang/lint

27

Chapter 4 Variables, Constants, and
Assignments

Statically vs. dynamically typed languages

Go is a statically typed programming language, meaning that when you define a variable, Go
expects you to tell it what type of data it will hold. You can’t then suddenly decide to store a
different type of data in the same variable.

Wars have been fought, marriages have failed, and friendships been sundered as a result of
programmers arguing about which is best: statically typed languages like Go, or dynamically
typed languages like JavaScript. (Okay, I’m exaggerating. But nonetheless, programmers are
definitely divided into camps over this.)

Go attempts to bridge the gap by being a statically typed language that nonetheless can be
used in ways that makes it “feel” more like a dynamic language.

Variable assignment

The best way to demonstrate this is with an example. Let’s take the “Hello, world!” program we
built in the previous chapter and amend it so the message it displays is stored in a variable
rather than hard-coded.

Code Listing 2

Note the way we declare variables in Go. We use the var keyword, followed by the name of the

variable (msg), followed by the type (in this instance, string), and then finally we assign the

value (“Hello World”). This might look a bit back-to-front compared to most statically typed
languages, but it’s the way Go likes to do things.

When we run it, we get exactly the same output we had before.

package main

import (
 "fmt"
)

func main() {
 var msg string = "Hello, world!\n"
 fmt.Printf(msg)
}

28

If we are initializing the variable at the point of declaration, we can omit the type and Go will
infer it from the value we have assigned to it. So we can use the form:

var myVar = "This will use the string data type"

Go also provides us with an even more concise way of declaring a variable and assigning a
value to it. Consider the following code:

Code Listing 3

In this example, we’ve done away with the type declaration and the var keyword. Using this

syntax feels very much like working with a dynamically typed language. However, we are not. In
the presence of the := operator, Go knows that we’re assigning a value to a variable, and it

infers the data type from the assignment value, just as before. If we then try to reassign a
different data type to msg, we’ll get an error, proving that no matter how “dynamic” Go might look

at times, it is still a statically typed language:

Code Listing 4

./main.go:9: no new variables on left side of :=

./main.go:9: cannot use 9 (type int) as type string in assignment

package main

import (
 "fmt"
)

func main() {
 msg := "Hello, world!\n"
 fmt.Printf(msg)
}

package main

import (
 "fmt"
)

func main() {
 msg := "Hello, world!\n"
 msg := 9
 fmt.Printf(msg)
}

29

In order to use the numerical value of 9, we must assign it to a different variable of numeric
type. Let’s change our program to use two variables and output them both in the same print

statement.

Code Listing 5

Today's prize-winning entry is 9

Here we’re using string interpolation (also known as variable substitution or variable expansion)
to replace a placeholder (%d) with the value of the variable winner.

Not all data is variable—sometimes we want to ensure that a value remains unchanged
throughout a program. We can use the const keyword for that, and a const can appear

anywhere a var can.

When you are declaring constants, you don’t have to specify the data type. You can, but you
don’t have to. That’s because constants are treated differently in Go. When you don’t specify a
data type for a constant, Go gives it a special “undefined” data type and converts it to an
appropriate data type at the point it is used. This is powerful, because it means that constants
can be accessed widely throughout your program without having to worry about mismatched
data types.

Scope

If we declare constants or variables within a function body, they’ll only be available within that
function. We can make them available to all functions in the main package by declaring them at

the top level.

package main

import (
 "fmt"
)

func main() {
 msg := "Today's prize-winning entry is %d\n"
 winner := 9
 fmt.Printf(msg, winner)
}

30

 Tip: If we declare any constant or variable at the top level and capitalize the first
letter of its name, it becomes truly global and accessible from outside of the main
package. This is one of Go's most bizarre (yet useful) features, and it helps us avoid
the need for keywords like private, public, protected, and so on.

But remember that if we declare constants or variables at the top level, we must use the var or

const keywords—we cannot use the shortcut variable assignment operator :=. We can group

several assignments together at the top level by surrounding them with parentheses, as shown
in Code Listing 6.

Code Listing 6

Wednesday's prize-winning entry is 9 and wins 10000!!!

 Note: We use %s to interpolate a string and %d to interpolate an integer. See a
full list of interpolation verbs here.

We can also scope variables in the same way:

Code Listing 7

package main

import (
 "fmt"
)

const (
 prizeDay = "Wednesday"
 prizeFund = 10000
)

func main() {
 msg := "%s's prize-winning entry is %d and wins %d!!!\n"
 winner := 9
 fmt.Printf(msg, prizeDay, winner, prizeFund)
}

package main

import (
 "fmt"
)

https://golang.org/pkg/fmt/

31

Thursday's prize-winning entry is 9 and wins 50000!!!

Because prizeDay and prizeFund are variables, we can change their values. If we had

attempted to do that when they were defined as constants, we would have received the
following error:

./main.go:13: cannot assign to prizeDay

./main.go:14: cannot assign to prizeFund

./main.go:14: cannot use 50000 (type int) as type untyped number in
assignment

Now that we’ve seen how types are declared, let’s have a look at the range of data types
available.

var (
 prizeDay = "Wednesday"
 prizeFund = 10000
)

func main() {
 prizeDay = "Thursday"
 prizeFund = 50000
 msg := "%s's prize-winning entry is %d and wins %d!!!\n"
 winner := 9
 fmt.Printf(msg, prizeDay, winner, prizeFund)
}

32

Chapter 5 Basic Data Types

Basic data types in Go consist of integers, floating-point numbers, strings, and Booleans. These
are the Go “primitives” from which the more complex types are built.

Numeric data types

Integers

Integers are simply numbers without a decimal part. In simple terms, they are “whole numbers.”
So 5, 34, and 7,424 are integers. 3.14, 22.7, and 0.01098 are not.

Although we like to think of numbers in terms of a 10-based numbering system, computers store
them in binary form. The size of the number a computer can store depends on the amount of
memory space allocated to the task. For example, a 4-bit integer can store 0000 (zero), 0001
(one), 0011 (three), and so on up to 1111 (15). So a 4-bit integer can represent the numbers
zero to 15.

Go’s integer data types range in storage capacity from 8 bits to 64 bits. If you need that level of
control over memory allocation, you can choose from uint8, uint16, uint32, uint64, and

from int8, int16, int32, and int64.There are also variations called uints, which store only

unsigned integers: bytes (equivalent to uint8) and runes (equivalent to uint32). However,

gone are the days where memory is limited for many applications, and for most use cases the
simple int data type will be more than adequate. It corresponds to either int32 or int64 and

can store numbers from -2147483648 to 2147483647 and from -9223372036854775808 to
9223372036854775807, respectively.

If you need to work with larger integers than that, consider using the uint data type, which is

either uint32 or uint64 and can store 0 to 4294967295 or 0 to 18446744073709551615,

respectively.

Floating-point numbers

Floating-point numbers, or “real numbers,” contain a decimal part. The important thing to realize
is that they are often inexact and their accuracy depends on the number of decimal places the
computer can store. As with integers, there are several different data types you can choose
from, all offering different levels of precision, although the storage mechanism is not the same
as for integer values. For the vast majority of cases, stick with float32 and float64 and

consult the documentation if you have special requirements.

33

Working with numeric data

To assign an integer value to a variable, simply specify the number. To force a variable to store
a number as a floating-point value, ensure that you specify the decimal component, even if it is
zero.

Code Listing 8

2 + 3 = 5

22.000000 / 7.000000 = 3.142857

Note that even though we are sure that the values of fp1 and fp2 are exact, the result of

fp1/fp2 is inexact, and the accuracy depends on the data type being used to hold it. Because

we have allowed Go to infer the type for us, what actual type is Go using?

We can discover this by using Go’s reflect library, which allows Go programs to interrogate

themselves for information.

Code Listing 9

package main

import (
 "fmt"
)

func main() {
 int1 := 2
 int2 := 3

 fp1 := 22.0
 fp2 := 7.0

 fmt.Printf("%d + %d = %d\n", int1, int2, int1 + int2)
 fmt.Printf("%f / %f = %f\n", fp1, fp2, fp1 / fp2)
}

package main

import (
 "fmt"
 "reflect"
)

func main() {
 fp1 := 22.0
 fp2 := 7.0

34

22.000000 / 7.000000 = 3.142857

fp1 is type: float64

fp2 is type: float64

result is type: float64

If you want to specify the type of your float explicitly (such as float32), you could use one of

the following constructs:

var fp1 float32;

fp1 = 3.14

or

fp1 := float32(3.14)

If you want to cast from one type to another, use the second form shown previously:

i := 373

f := float64(i)

u := uint(f)

If you declare a numeric value but don’t give it a value, it is automatically assigned the value of
zero.

Booleans

A Boolean is a special type of integer that has only two values, usually denoted by true and

false. Boolean values are used for logical operations.

When you define a Boolean variable without assigning a value to it, it is given the default value
of false.

As well as checking the value held by a Boolean variable, you can also use Boolean values with
the three logical operators && (and), || (or), and ! (not). The following example shows how

these work:

 result := fp1/fp2
 fmt.Printf("%f / %f = %f\n", fp1, fp2, result)

 fmt.Printf("fp1 is type: %s\n", reflect.TypeOf(fp1))
 fmt.Printf("fp2 is type: %s\n", reflect.TypeOf(fp2))
 fmt.Printf("result is type: %s\n", reflect.TypeOf(result))
}

35

var trueValue bool

trueValue = true

falseValue := false

fmt.Println(trueValue && trueValue) // true

fmt.Println(trueValue && falseValue) // false

fmt.Println(trueValue || trueValue) // true

fmt.Println(trueValue || falseValue) // true

fmt.Println(!trueValue) // false

Strings

Strings are absolutely fundamental to computer programs in all languages, and Go provides a
lot of support for creating and manipulating strings.

You can define a string in Go by surrounding it with double quotes, as we’ve seen many times
already, or by backquotes (`). The difference is that if you use double quotes, you cannot

include newlines. However, double-quoted strings do allow you to insert special “escape
characters,” such as \n for a carriage return and \t for a tab. Anything inside backquotes is

used completely literally. For example:

str1 := "There is a tab between this\tand this"

str2 := `There is a tab between this\tand this`

fmt.Println(str1)

fmt.Println(str2)

This produces the following:

There is a tab between this and this

There is a tab between this\tand this

If you declare a string variable and don’t assign a value, Go gives it a default value of an empty
string (“”).

36

Common string operations

Concatenation

You can join two or more strings together to create a new, longer string by using the
concatenation operator +. Note that, as with most languages, Go strings are immutable. The

sequence of bytes in a string never changes, but you can always assign a new value to a string
variable.

str1 := "This is a string "

str2 := " which is now much longer"

fmt.Println(str1 + str2)

This produces:

This is a string which is now much longer

The backquotes approach is very useful when you want to include double quotes within the
string:

str1 := `I can include "double quotes" in this string without any issues`

str2 := "The use of "double quotes" within this string will cause a compiler
error"

Length

You can get the length of a string by using the len() function.

str := "This is a string"

fmt.Println(len(str)) // Displays 17

Substrings

You can return a character or characters from specific positions in the string by including square
brackets, which contain a starting position and ending position separated by a colon. The first
character in a string is at position zero, so the total number of positions equals (len(str)-1).
If you want the starting position to be either the at beginning or at the end of the string, just omit
the position number.

str := "The elephants of spring are tickling my frying spoon"

fmt.Println(str[0:4]) // "The "

fmt.Println(str[17:23]) // "spring"

fmt.Println(str[:13]) // "The elephants"

fmt.Println(str[31:]) // "frying spoon"

37

Comparing strings

You can compare strings with the usual comparison operators: == (for equality), < (less than), >

(greater than), and so on. The comparison is byte by byte, and the result depends on the natural
lexicographic ordering (namely, how the strings might appear in a dictionary). For this example,
we can use Go’s if/else construct, which is very similar to how you might use if/else in

another language, but note that in Go, you don’t need parentheses around the conditions.

str1 := "abc"

str2 := "abd"

if str1 > str2 {

 fmt.Println("abc is greater than abd")

} else {

 fmt.Println("abd is greater than abc")

}

This produces:

abd is greater than abc

We’ll look more at the if/else statement and the other Go control structures in the next

chapter.

Converting between numbers and strings

Because Go is a statically typed language, you cannot use strings where you would expect a
number, and vice versa.

For example:

int1 := 48

str1 := "My number is "

str1 = str1 + int1

// "invalid operation: str1 + int1 (mismatched types string and int)"

str2 := "4"

result := 48 / str2

fmt.Println(result)

// "cannot convert 48 to type string"

// "invalid operation: 48 / str2 (mismatched types int and string)"

38

The solution is to use the functions in the strconv package, which will provide a number of

different ways for converting between strings and other data types. The most common functions
are:

• strconv.Atoi() : Converts a string to an integer
• strconv.Itoa() : Converts an integer to a string

The itoA() function always works, so there is no facility for returning an error. But the Atoi()

function returns two values: the converted value, and an object containing information about any
errors resulting from the conversion. So we need to assign two variables to receive those
returned values:

i,err := strconv.Atoi("32")

If we’re not interested in whatever information err holds (that is, if we’re confident that the

conversion is straightforward and not going to cause an error condition), then by defining it we
are duty-bound by Go to use it somewhere in our program. If we don’t, we’ll get a compiler error:

err declared and not used

The solution is to use another Go idiom: the empty variable (_). This will provide the

“placeholder” for the returned value, but will allow us to ignore it:

i, _ := strconv.Atoi("32")

 Tip: Use the empty variable (_) anywhere Go requires you to declare a variable that
you don't intend to use anywhere else in your program. Otherwise, you will get a
compilation error (Go likes to keep a tidy house and hates anything that is declared
and never used).

The result of fixing these data-type issues can be seen in Code Listing 10:

Code Listing 10

package main

import (
 "fmt"
 "strconv"
)

func main() {
 int1 := 48
 int1_as_string := strconv.Itoa(int1)
 str1 := "My number is "
 str1 = str1 + int1_as_string
 fmt.Println(str1)

 str2 := "4"
 str2_as_integer, _ := strconv.Atoi(str2)

39

My number is 48

48 / 4 is 12

There are many other functions for converting strings to and from other data types within the
strconv package:

• ParseBool(), ParseFloat(), ParseInt(), and ParseUint() convert strings to
values.

• FormatBool(), FormatFloat(), FormatInt(), and FormatUnit() convert values
to strings.

Consult the strconv package documentation for a full list.

 result := 48 / str2_as_integer
 fmt.Printf("%s / %s is %d\n", int1_as_string, str2, result)
}

40

Chapter 6 Control Structures

At the end of the last chapter, we saw how we could use an if/else statement to affect the

execution path of a program. This is known as conditional processing, in which the path the
program takes depends on the result of an expression.

We’ll look at if/else in a little more depth in this chapter (you’ll be pleased to know that you

have already seen most of what it has to offer), together with its cousin the switch statement.

Sometimes you’ll want your program to repeat a certain task a set number of times. Like most
languages, Go provides a number of different alternatives for doing this, and we’ll consider
these, too.

In doing both of these things, we’ll look at some other features of Go, such as writing functions
and accepting arguments from the command line.

Using if/else

The if/else statement allows us to do one of two different things, depending on a particular

condition:

if a == 1 {

 // a equals 1, so do this

} else {

 // a is not equal to 1, so do this instead

}

We can add further if/else statements to this if we want to conduct further tests. For example:

if a == 1 {

 // do this: a is 1

} else if a == 2 {

 // do this: a is 2

} else if b == 1 {

 // do this: b is 1, a is not 1 or 2

} else {

 // do this: b is not 1 and a is not 1 or 2

}

41

Let’s demonstrate this using an example, which will also give us a chance to cover a couple of
features that Go supports, namely command-line arguments and functions.

Our program should allow us to input a set of four numbers, and it will tell us if each of those
numbers is odd or even.

First, we need a way to input numbers. We can do this by passing the four numbers we are
interested in to our Go program at runtime as arguments. For example:

go run main.go 12 4 7 93

To access those arguments, we need to use the os package and retrieve its Args property.

Args is a special type of variable called a slice that we’ll consider in the next chapter. For now,

just think of it as a collection of items that will include in its first position the directory path of our
main.go program, and then, in subsequent positions, each of the arguments that we passed to

the program at the command line.

Because we’re only interested in the arguments we passed, we can safely ignore the first
element in Args. This is the element in position zero because, like strings, elements in Args are

numbered starting at zero.

Code Listing 11

This program allows us to call our program with the four numbers we are interested in as
parameters like so:

go run main.go 1 45 67 87

It then displays the numbers that we passed to it (as strings):

1 45 67 87

package main

import (
 "fmt"
 "os"
)

func main() {

 val1 := os.Args[1]
 val2 := os.Args[2]
 val3 := os.Args[3]
 val4 := os.Args[4]

 fmt.Printf("%s %s %s %s\n", val1, val2, val3, val4)
}

42

Now we can be sure that the program is accepting the numbers we are passing into it and
storing those in variables we can use to access them.

The next thing we need to do is test each of those numbers to see if they are odd or even. To
do that, we need to divide them by two and check to see if there is a remainder. Go provides the
modulus (%) operator for that, which divides the first operand by the second operand and returns

only the remainder. For example:

4 % 2 = 0

3 % 2 = 1

13 % 3 = 1

But we have four numbers, and it would be annoying to code the same test on each of them.
Let’s suppose that at some stage we want to expand our program to accept a thousand
numbers, or even a million (although we probably won’t be relying on the command line for
that).

We’ll code the test just once and put it into a function, separate from but like our main()

function, and we’ll call that instead. For now, we’ll just call the function once for each of our
numbers, but later in this chapter, when we start looking at loops, we’ll tidy that up to accept an
unlimited number of numbers as arguments.

Functions are defined by the keyword func, require a name and optionally a set of parameter

values enclosed by parentheses, and, if the function returns a value, the type of value it returns.
For example:

func myFunction(myString string, myNum int) float32 {

 // some code that creates a float32 value called myFloat

 return myFloat

}

This function is called myFunction, accepts two parameters—a string called myString and an

integer value called MyNum—and returns a value of float32 data type.

If your function does not require parameters, include the parentheses but leave them empty (like
we have with main()). We need our function to accept a single parameter, which is the number

we want to test.

We also want the function to return either odd or even when it is called, depending on the test

results. We return a value to the calling function using the return keyword followed by the

value we want to return. We’ll decide which value to return using an if/else statement. Here’s

how we’ll code the function:

func oddOrEven(value string) string {

 num, _ strconv.Atoi(value)

 if num % 2 > 0 {

 return "even"

43

 } else {

 return "odd"

 }

}

Note how we’ve used the strconv.Atoi() function to convert the input parameter, which is of

type string to an integer, so that we can use the modulus operator (%) on it.

Here’s what we end up with:

Code Listing 12

go run main.go 12 78 99 37

12 is even

78 is even

99 is odd

37 is odd

package main

import (
 "fmt"
 "os"
 "strconv"
)

func main() {

 fmt.Printf("%s is %s\n", os.Args[1], oddOrEven(os.Args[1]))
 fmt.Printf("%s is %s\n", os.Args[2], oddOrEven(os.Args[2]))
 fmt.Printf("%s is %s\n", os.Args[3], oddOrEven(os.Args[3]))
 fmt.Printf("%s is %s\n", os.Args[4], oddOrEven(os.Args[4]))
}

func oddOrEven(value string) string {
 num, _ := strconv.Atoi(value)
 if num % 2 == 0 {
 return "even"
 } else {
 return "odd"
 }
}

44

Looping with the for statement

Looking at our program so far, it’s obvious that although we’re reusing code successfully by
putting our odd/even detection logic in a function, we’re still manually calling that function for
each of our input parameters. Furthermore, we have hard-coded the reference to each input
parameter. It would be nice to let the program accept as many or as few input parameters as
our users feel inclined to provide and let it conduct our test on each of them.

In order to do that, we need to know the number of parameters passed in for each execution of
the program and a way to process each of them in turn.

Getting the number of parameters is easy, because you can use the standard len() function on

Args to return the number of parameters it holds:

numParams := len(os.Args)

So all we need now is a way to iterate through each item in Args and do something with it.

Enter the for statement.

The for statement allows you to repeat a block of statements multiple times. If you’ve used any

C-style programming language, then you’re already familiar with it. The interesting thing is that,
unlike most languages, the for statement is the only looping statement Go supports. However,

it can be used in different ways to achieve the same thing as those other languages’ while and

do-while constructs.

The basic syntax of the for loop is as follows:

for init; condition; post {

 // run commands until condition is true

}

Where both the init and post statements are optional:

• The init statement is executed before the first iteration.
• The condition expression is evaluated before every iteration.
• The post statement is executed at the end of every iteration.

 Note: Unlike with many C-style languages, there are no parentheses around the
init, condition, and post components of the for statement, and you must always
include the braces ({}).

Let’s look at the various forms. First of all, an infinite loop:

for {

 // The statements in this block execute forever

}

45

This form is probably of limited use unless the entire program repeats forever. For example,
games often run in a continuous loop, processing all the action and responding to user input.

You can also use this form to perform the equivalent of a while…do loop in other languages by

adding a break statement to exit the loop when a condition is met:

total: = 1

for {

 if total > 1000 {

 break

 }

 total += 1

}

The following is the most common form and repeats the blocks in the statement from init until

the condition is met, increasing the amount of init by the expression in post with each

iteration:

for i := 1; i <= 5; i++ {

 fmt.Printf("#%d\t", i)

}

It produces:

#1 #2 #3 #4 #5

The following replicates the while loop in other languages. It repeats the loop while the

condition is met, but does not maintain its own loop counter like the previous example:

total := 1

for total < 1000 {

 total += total

}

The code in the for block repeats until total reaches 1,000.

For our purposes, the standard for init; condition; post {...} form will work well.

Code Listing 13

package main

import (
 "fmt"
 "os"

46

go run main.go 12 78 99 37

12 is even

78 is even

99 is odd

37 is odd

 Note: By setting the initial loop counter i to 1 and not zero, we avoid the first
element in Args (the path to the calling program).

The switch statement

Let’s consider a variation on the application we are building so that we can demonstrate the
other main conditional processing construct in Go: the switch statement.

In this example, we’re going to allow the user to input a string. We’ll parse the string and count
the number of letters from a to i, from j to r, and from s to z and any other characters, and
display the information to the user.

We already know how to accept multiple command-line parameters to our program, so allowing
just one will be child’s play!

We also know how to inspect the contents of a string. What’s more, we know how to iterate
through the string, character by character, with our trusty for statement.

 "strconv"
)

func main() {
 for i := 1; i < len(os.Args); i++ {
 fmt.Printf("%s is %s\n", os.Args[i],
 oddOrEven(os.Args[i]))
 }
}

func oddOrEven(value string) string {
 num, _ := strconv.Atoi(value)
 if num % 2 == 0 {
 return "even"
 } else {
 return "odd"
 }
}

47

The only thing we really need to consider is how to count the number of characters in each
range.

We could use a succession of if…else statements, but that would get really ugly, very quickly:

if letter = "a" {

 // increment the appropriate total

} else if letter = "b" {

...

} else if letter = "c" {

 ...

} ...

…and so on.

A better approach would be to use a switch statement. A switch statement consists of

(optionally) a condition to test, then several case clauses where we specify the conditions we

are trying to match against and write the code to deal with those conditions. We can also
provide a default clause that executes code that will run if none of the previous case

conditions have been met.

For example:

switch operatingSystem := userOS; operatingSystem {

 case: "Windows"

 fmt.Println("Made by Microsoft")

 case: "OS X"

 fmt.Println("Made by Apple")

 case: "Linux"

 fmt.Println("Made by a lot of clever volunteers")

 default:

 fmt.Println("I don't recognize that operating system. GEEK!")

}

 Note: Here we have not only demonstrated the switch statement, but a common
Go idiom: the ability to include an initialization statement in a control structure. We
can do the same in an if statement.

If we just want to avoid a great big list of if…else statements, then we might not even need the

condition:

numDaysInMonth := 30

48

switch {

 case numDaysInMonth >= 28 && numDaysInMonth <=29:

 fmt.Println("February")

 case numDaysInMonth == 30:

 fmt.Println("April, June, September, November")

 case numDaysInMonth == 31:

 fmt.Println("January, March, May, July, August, October,

 December")

}

Unlike most languages in which the code “falls through” to the next condition unless we provide
a “break” statement at the end of each case code block, Go immediately exits the switch

statement when a condition has been met and the code for the case has executed. If we want to
continue checking subsequent conditions thereafter, we need to make this explicit through the
use of the fallthrough keyword. This can be useful if we are testing data for which numerous

conditions could apply.

But back to our example. We can use the switch statement to achieve our objective as follows:

Code Listing 14

package main

import (
 "fmt"
 "os"
)

func main() {

 numAtoI, numJtoR, numStoZ, numSpaces, numOther := 0, 0, 0, 0, 0
 sentence := os.Args[1]

 for i := 1; i < len(sentence); i++ {
 letter := string(sentence[i])
 switch letter {
 case "a", "b", "c", "d", "e", "f", "g", "h", "i":
numAtoI += 1
 case "j", "k", "l", "m", "n", "o", "p", "q", "r":
numJtoR += 1
 case "s", "t", "u", "v", "w", "x", "y", "z":
 numStoZ += 1
 case " ":
 numSpaces += 1
 default:
 numOther += 1

49

go run main.go "Everybody in the whole cell block (was dancing to the
Jailhouse Rock)"

A to I: 25

J to R: 17

S to Z: 11

Spaces: 11

Other: 4

And we’re done! All this should look pretty familiar to you by now. There’s just one thing I’d like
to point out: as we’re looping through the letters in the input string, what we’re getting back is a
byte, not a string with a single character in it. That’s why we need to use an explicit cast to
convert that byte to a string:

letter := string(sentence[i])

This allows us to get the character itself rather than the byte that represents it.

For example, if we did a byte-by-byte extract from the string Hello, it would look like this:

72 101 108 108 111

and not what we want, which is this:

H e l l o

 }
 }

 fmt.Printf("A to I: %d\n", numAtoI)
 fmt.Printf("J to R: %d\n", numJtoR)
 fmt.Printf("S to Z: %d\n", numStoZ)
 fmt.Printf("Spaces: %d\n", numSpaces)
 fmt.Printf("Other: %d\n", numOther)
}

50

Chapter 7 Arrays, Slices, and Maps

In Chapter 5, we looked at the basic data “primitives” that Go supports: numbers, strings, and
Booleans. As programmers, we often want to deal with several such values as a single unit. Go
provides a number of built-in “composite” types to help us do this. In this chapter, we will
consider arrays, slices, and maps.

Arrays

Arrays are a type of data structure that can store a fixed-size sequential collection of elements
of the same type. The key thing to note here is that the length of an array is fixed. Once you
have defined that, it will always hold exactly the same number of elements.

The way we declare an array in Go is to specify the name of the variable that holds the array,
the number of elements that the array can store, and the data type of those elements. For
example:

var nums [6]int // holds 6 integers

var strings [3]string // holds 3 strings

var preciseNums [10]float64 // holds 10 float64 numbers

We can retrieve the length of any array by using the len() function:

fmt.Printf("Length: %d\n" + len(nums)) // Displays "Length: 6"

If we want to initialize the items in each array at the same time as we declare them, we can do
so by specifying the value of each item in a comma-separated list within braces:

totals := [5]int{1, 2, 3, 4, 5}

If you don’t know the length of the array or you’re just feeling lazy and want Go to work it out for
you, you can use this notation:

totals := [...]int{1, 2, 3, 4, 5}

If we don’t initialize the array, each item in the array is initialized with the default value for its
data type:

fmt.Println(nums) // Displays "[0 0 0 0 0 0]"

fmt.Println(strings) // Displays "[]"

fmt.Println(preciseNums) // Displays " [0 0 0 0 0 0 0 0 0 0]"

We can set and get the value of individual array items by referring to their index positions. As
with the position of bytes within strings, the numbering of Go array indexes begins at zero. So
the second item in the array is at position 1, the third item in the array is at position 2, and so on.

51

nums[4] = 50 // Sets the 5th item to 50

fmt.Println("nums[4] = " + nums[4]) // Displays "nums[4] = 50"

If we want to process each item in an array, we can use a for loop with the range keyword,

specifying the name of a variable to store the individual array item during each loop iteration and
the name of the array as a whole:

for _, item := range myArray {

 // Process the array item

}

Consider the following example, which loops through an array containing rainfall statistics for
the previous five years and calculates the average (mean) rainfall for the period.

Code Listing 15

Average rainfall: 1261 mm

Array types are one-dimensional, but you can combine array types to build multi-dimensional
data structures. The following example creates an array with five rows and two columns, and
outputs the value stored in each row:

Code Listing 16

package main

import (
 "fmt"
)

func main() {

 total := 0
 mean := 0
 rainfallStats := [5]int{1091, 2010, 995, 1101, 1111}
 for _, value := range rainfallStats {
 total += value
 }
 mean = total / len(rainfallStats)
 fmt.Printf("Average rainfall: %d mm\n", mean)
}

package main

import "fmt"

func main() {
 // Array with 5 rows and 2 columns

52

arr[0][0] = 0

arr[0][1] = 0

arr[1][0] = 2

arr[1][1] = 4

arr[2][0] = 1

arr[2][1] = 3

arr[3][0] = 5

arr[3][1] = 7

arr[4][0] = 6

arr[4][1] = 8

Initializing big arrays in a single line of does not make your code easy to read, so Go allows you
to put the elements on successive lines, as follows:

a := [5]int{

 93,

 79,

 34,

 202,

 17,

}

Notice the last comma? Most languages would complain about that. Go actually requires it.
Why? Because it makes it easier to comment out items that you no longer require without
having to adjust the position of the last comma:

a := [5]int{

 93,

 79,

 34,

 var arr = [5][2]int{ {0,0}, {2,4}, {1,3}, {5,7}, {6,8}}

 // Display each array element's value
 for i := 0; i < 5; i++ {
 for j := 0; j < 2; j++ {
 fmt.Printf("arr[%d][%d] = %d\n", i,j, arr[i][j])
 }
 }
}

53

 //202,

 17,

}

You’ve got to love Go—it’s always trying to make your life as a programmer easier!

However, we now have an array with space for five items that only contains four. If we print this
out, we can see that Go has moved everything up and substituted a default value for the empty
item in the list:

fmt.Println(a) // Displays "[93 79 34 17 0]"

This is not necessarily what we want, and one of several reasons that you don’t often see arrays
being used in Go programs. They can be a bit of a pain to work with, especially when it comes
to resizing them—you can’t! The only way around that is to create a new array.

 Tip: Make sure you really want an array before you use one. Arrays are limited, and
don’t have as much flexibility as their much more flexible cousins the slices,
described later in this chapter.

Another thing to note about arrays is that when you pass one into a function as a parameter,
what the function receives is not the array itself, but a copy of the array. Any changes you make
to the array in the function will not affect the original array. This is known as passing by value,
and can be computationally expensive if you are dealing with a very large array.

The following example demonstrates this:

Code Listing 17

package main

import (
 "fmt"
)

func main() {
 myArray := [...]string{"Apples", "Oranges", "Bananas"}
 fmt.Printf("Initial array values: %v\n", myArray)
 myFunction(myArray)
 fmt.Printf("Final array values: %v\n", myArray)
}

func myFunction(arr [3]string) {
 // Change Oranges to Strawberries
 arr[1] = "Strawberries"
 fmt.Printf("Array values in myFunction(): %v\n", arr)
}

54

Initial array values: [Apples Oranges Bananas]

Array values in myFunction(): [Apples Strawberries Bananas]

Final array values: [Apples Oranges Bananas]

Like other languages, Go lets you pass by value or by reference. The difference is that when
you pass by reference, you pass a pointer to the memory location where the value is stored, so
that you are working with the original object. If the function changes the value of that object, the
changes are permanent once the function has finished executing. We’ll talk about pointers in
Chapter 9 when we discuss user-defined types, but bear this in mind when choosing to use an
array in Go.

So, you can now see that the array type has its limitations. That’s not to say we’ve wasted time
covering it here, because it leads us into talking about another, more capable composite type
based on the array, called a slice.

Slices

Slices are a key data type in Go. They do everything you expect an array to do, and more.

A slice is basically a “view” into an underlying array.

You can create and populate a slice simply by defining an array without specifying the size:

fruits := []string{"Apples", "Oranges", "Bananas", "Kiwis"}

This approach provides several benefits.

One is that you can refer to a range of items in the slice using a similar notation as you used
with substrings in Chapter 5—effectively taking a “subslice” from the slice.

The syntax to use is:

[lower-bound, upper-bound]

… where lower-bound is included in the subslice and upper-bound is excluded from it.

For example:

Code Listing 18

package main

import (
 "fmt"
)

func main() {
 fruits := [...]string{"apples", "oranges", "bananas", "kiwis"}
 fmt.Printf("%v\n", fruits[1:3])

55

[oranges bananas]

[apples oranges]

[apples oranges bananas]

[bananas kiwis]

Another benefit is that when you pass a slice to a function as a parameter, instead of the
function receiving a copy of the underlying array it gets a pointer to it. That means anything you
do to the slice within the function is reflected in the underlying array. We can demonstrate this
by rewriting the program in Code Listing 17 to use a slice instead of an array.

Code Listing 19

Initial slice values: [Apples Oranges Bananas]

Slice values in myFunction(): [Apples Strawberries Bananas]

Final slice values: [Apples Strawberries Bananas]

So far we have created slices directly from the items we want to store in them. If you want to
create a new slice and then add data to it later, you need to use the built-in make() function.

mySlice := make([]int)

If you know the initial size, you can specify it as follows:

 fmt.Printf("%v\n", fruits[0:2])
 fmt.Printf("%v\n", fruits[:3])
 fmt.Printf("%v\n", fruits[2:])
}

package main

import (
 "fmt"
)

func main() {
 mySlice := []string{"Apples", "Oranges", "Bananas"}
 fmt.Printf("Initial slice values: %v\n", mySlice)
 myFunction(mySlice)
 fmt.Printf("Final slice values: %v\n", mySlice)
}

func myFunction(fruits []string) {
 // Change Oranges to Strawberries
 fruits[1] = "Strawberries"
 fmt.Printf("Slice values in myFunction(): %v\n", fruits)
}

56

mySlice := make([]int, 4)

You can also specify a maximum size by supplying a third parameter to the make() function

and retrieve its value at any time by calling cap(). The following code creates a slice that will

store up to eight int values, with an initial capacity of four such values:

Code Listing 20

Initial Length: 4

Capacity: 8

Contents: [0 0 0 0]

If we only know the maximum number of items our slice should be able to hold (eight), but not
the number of initial values, we could create it like this:

mySlice := make([]int, 0, 8)

Let’s populate our slice:

mySlice[0] = 1

mySlice[1] = 3

mySlice[2] = 5

mySlice[3] = 7

That’s a rather cumbersome way of doing it, so let’s use append() instead:

mySlice = append(mySlice, 1, 3, 5, 7)

The main benefit of a slice is that it can be resized dynamically. Let’s say we have specified a
capacity for the slice, but we’ve added more items than the capacity allows. What happens?

package main

import (
 "fmt"
)

func main() {
 mySlice := make([]int, 4, 8)
 fmt.Printf("Initial Length: %d\n", len(mySlice))
 fmt.Printf("Capacity: %d\n", cap(mySlice))
 fmt.Printf("Contents: %v\n", mySlice)
}

57

Let’s see:

Code Listing 21

Contents: [1 3 5 7 9 11 13 17]

Number of Items: 8

Capacity: 8

Contents: [1 3 5 7 9 11 13 17 19]

Number of Items: 9

Capacity: 16

What happened here is that when we appended the ninth item to the slice, Go automatically
doubled the capacity for us in order to make extra room in case we want to continue adding
items. So the capacity we specified when we created the slice is not treated as a hard limit, just
a guideline for Go to determine the initial memory allocation.

However, this only works because we used the slice-specific append() function. If we had

attempted to add the ninth integer using the standard array approach, we would receive a run-
time error:

Code Listing 22

package main

import (
 "fmt"
)

func main() {

 mySlice := make([]int, 0, 8)
 mySlice = append(mySlice, 1, 3, 5, 7, 9, 11, 13, 17)

 fmt.Printf("Contents: %v\n", mySlice)
 fmt.Printf("Number of Items: %d\n", len(mySlice))
 fmt.Printf("Capacity: %d\n", cap(mySlice))

 mySlice = append(mySlice, 19)

 fmt.Printf("Contents: %v\n", mySlice)
 fmt.Printf("Number of Items: %d\n", len(mySlice))
 fmt.Printf("Capacity: %d\n", cap(mySlice))

}

package main

58

Contents: [1 3 5 7 9 11 13 17]

Number of Items: 8

Capacity: 8

panic: runtime error: index out of range

goroutine 1 [running]:

panic(0xda900, 0xc82000a080)

 /usr/local/go/src/runtime/panic.go:464 +0x3e6

main.main()

 .../src/hello/main.go:17 +0x725

exit status 2

This is because index position 8 does not exist. It’s only by using append() that Go can detect

that we need extra capacity and then provide it.

Finally, I mentioned that one of the benefits of slices is that you can pass them into functions as
pointers to their underlying arrays and therefore make changes to the original (and not just a
copy), which is what happens when you pass an array to a function.

But what if you genuinely want to take a copy of a slice? You can do that with Go’s copy()

function:

import (
 "fmt"
)

func main() {

 mySlice := make([]int, 0, 8)
 mySlice = append(mySlice, 1, 3, 5, 7, 9, 11, 13, 17)

 fmt.Printf("Contents: %v\n", mySlice)
 fmt.Printf("Number of Items: %d\n", len(mySlice))
 fmt.Printf("Capacity: %d\n", cap(mySlice))

 mySlice[8] = 19

 fmt.Printf("Contents: %v\n", mySlice)
 fmt.Printf("Number of Items: %d\n", len(mySlice))
 fmt.Printf("Capacity: %d\n", cap(mySlice))

}

59

Code Listing 23

mySlice: [1 3 5 7 9 11 13 17]

mySliceCopy: [1 3 5 999 9 11 13 17]

Hopefully you can now see some of the immense advantages there are to working with slices
compared to arrays. For these reasons, it’s actually quite rare to see arrays in Go: slices are
almost always the best choice.

Maps

A map is an unordered collection of key-value pairs. If you’ve been programming for a while,
you’ve seen this kind of structure referred to elsewhere as an associative array, a dictionary, or
a hash.

The idea behind a map is that you access its values by referencing the key that points to each
value. The keys can be any data type that you can test for equality. So strings, integers,
floating-point numbers, and so on are all good, but you cannot use an array as a key, for
example.

Maps are often used as a kind of in-memory “lookup” table. Say for instance that we want to
keep a record of famous actors and their ages. We can create a map using the make() function,

just as we did with a slice:

actor := make(map[string]int)

In the map declaration, the type within square brackets is the type of data we want to use for the

keys, and the type following it is the data type of the values.

We then assign an item to the map using the following syntax:

package main

import (
 "fmt"
)

func main() {
 mySlice := make([]int, 0, 8)
 mySlice = append(mySlice, 1, 3, 5, 7, 9, 11, 13, 17)

 mySliceCopy := make([]int, 8)
 copy(mySliceCopy, mySlice)

 mySliceCopy[3] = 999
 fmt.Printf("mySlice: %v\n", mySlice)
 fmt.Printf("mySliceCopy: %v\n", mySliceCopy)
}

60

actor["Redford"] = 79

We then retrieve it by specifying the key of the value we want to access:

fmt.Println(actor["Redford"])

Code Listing 24

Robert Redford is 79 years old

Cameron Diaz is 43 years old

Val Kilmer is 56 years old

Generously, Go also provides us with a shorthand syntax for creating maps:

Code Listing 25

package main

import "fmt"

func main() {
 actor := make(map[string]int)
 actor["Paltrow"] = 43
 actor["Cruise"] = 53
 actor["Redford"] = 79
 actor["Diaz"] = 43
 actor["Kilmer"] = 56
 actor["Pacino"] = 75
 actor["Ryder"] = 44

 fmt.Printf("Robert Redford is %d years old\n",
 actor["Redford"])
 fmt.Printf("Cameron Diaz is %d years old\n", actor["Diaz"])
 fmt.Printf("Val Kilmer is %d years old\n", actor["Kilmer"])
}

package main

import "fmt"

func main() {
 actor := map[string]int{
 "Paltrow": 43,
 "Cruise": 53,
 "Redford": 79,
 "Diaz": 43,
 "Kilmer": 56,
 "Pacino": 75,

61

Robert Redford is 79 years old

Cameron Diaz is 43 years old

Val Kilmer is 56 years old

If we try to access a map value with a nonexistent key, Go will return the default value for the
data type:

fmt.Printf("Anthony Hopkins is %d years old\n", actor["Hopkins"])

This results in:

Anthony Hopkins is 0 years old

In our example, that’s unlikely to cause much confusion: we can simply test for zero to see if our
users have specified a valid key. But what if zero is a legitimate value? How can we differentiate
between that and an invalid key?

The solution is to use the “comma OK” syntax. This takes advantage of the map’s ability to
return two values instead of one when we attempt to retrieve an item. The first (age) is the value

itself, and the second (ok) is a Boolean that tells us whether or not the key used was valid:

if age, ok := actor["Hopkins"]; ok {

 fmt.Printf("Anthony Hopkins is %d years old\n", age)

} else {

 fmt.Println("Actor not recognized.")

}

 Tip: You can use an initialization statement to declare a variable in the same line
as an if statement. This leads to clean, understandable code. The variable's scope is
the statement in which it is defined.

You can iterate through a map using a for loop with the range statement, just as we did with an

array. Note, however, that the items in a map will be unordered, so you cannot rely on them
being in the order you inserted them, or indeed in the same order each time you loop through
them. This is by design: the Go team didn’t want programmers to rely upon an ordering that was
essentially unreliable, so they randomized the iteration order to make that impossible.

 "Ryder": 44,
 }

 fmt.Printf("Robert Redford is %d years old\n",
 actor["Redford"])
 fmt.Printf("Cameron Diaz is %d years old\n", actor["Diaz"])
 fmt.Printf("Val Kilmer is %d years old\n", actor["Kilmer"])
}

62

Code Listing 26

RUN NUMBER 1
Ryder : 44 years old
Paltrow : 43 years old
Cruise : 53 years old
Redford : 79 years old
Diaz : 43 years old
Kilmer : 56 years old
Pacino : 75 years old

RUN NUMBER 2
Kilmer : 56 years old
Pacino : 75 years old
Ryder : 44 years old
Paltrow : 43 years old
Cruise : 53 years old
Redford : 79 years old
Diaz : 43 years old

RUN NUMBER 3
Paltrow : 43 years old
Cruise : 53 years old
Redford : 79 years old
Diaz : 43 years old
Kilmer : 56 years old

package main

import "fmt"

func main() {
 actor := map[string]int{
 "Paltrow": 43,
 "Cruise": 53,
 "Redford": 79,
 "Diaz": 43,
 "Kilmer": 56,
 "Pacino": 75,
 "Ryder": 44,
 }

 for i := 1; i < 4; i++ {
 fmt.Printf("\nRUN NUMBER %d\n", i)
 for key, value := range actor {
 fmt.Printf("%s : %d years old\n", key, value)
 }
 }
}

63

Pacino : 75 years old
Ryder : 44 years old

If you want to sort the items in a map, you must rely on another structure for help. The following
example demonstrates pulling the actor keys into a slice, ordering the slice using the sort

package, then iterating through the slice to retrieve the actor names from the map in
alphabetical order.

Code Listing 27

Cruise : 53 years old

Diaz : 43 years old

Kilmer : 56 years old

Pacino : 75 years old

package main

import (
 "fmt"
 "sort"
)

func main() {
 actor := map[string]int{
 "Paltrow": 43,
 "Cruise": 53,
 "Redford": 79,
 "Diaz": 43,
 "Kilmer": 56,
 "Pacino": 75,
 "Ryder": 44,
 }

 // Store the keys in a slice
 var sortedActor []string
 for key := range actor {
 sortedActor = append(sortedActor, key)
 }
 // Sort the slice alphabetically
 sort.Strings(sortedActor)

 /* Retrieve the keys from the slice and use
 them to look up the map values */
 for _, name := range sortedActor {
 fmt.Printf("%s : %d years old\n", name, actor[name])
 }
}

64

Paltrow : 43 years old

Redford : 79 years old

Ryder : 44 years old

65

Chapter 8 User-Defined Types

As programmers, we often must represent real-world objects in code, and being able to store all
the information we need about a given “thing” in a discrete entity, along with the operations we
need to perform on that information, is very helpful. This is the essence of object-oriented
programming, a paradigm based on the concept of “objects” that store data (state) in the form of
fields, and code (behavior) that can access and manipulate that data in the form of methods.

Go supports types, methods, and interfaces that enable us to work in an object-oriented fashion.
You might argue that Go isn’t strictly an object-oriented language in that it does not directly
support a type hierarchy, but it goes a long way towards implementing many of the features you
will find in a true object-oriented language.

A word on pointers

Before we dive into how Go implements all of this, we need to discuss pointers. The reason for
doing so will become apparent as we move forward.

If you’ve never used a language like C or C++, the concept of a pointer might be unfamiliar to
you. In programming parlance, a pointer contains the memory address of a variable.

Here is how we define a pointer to a variable of type int:

var p *int

And this is how we assign the memory address of the variable q to pointer p:

q = &i

To display the pointer’s underlying value, use the * (indirection or de-referencing) operator:

*p = 123 // De-reference pointer p to get i and assign a value to it

fmt.Println(*p) // Print the value of i by dereferencing p

The usage of pointers is demonstrated in the following example:

Code Listing 28

package main

import "fmt"

func main() {
 a, b := 20, 71

66

Value of a is: 20

New value of a is: 21

Value of b is: 71

New value of b is: 81

Structs

Go doesn’t use the word “object.” What you might think of as an object in another language is a
struct in Go.

To define a struct, use the type keyword followed by an identifier and then the struct

keyword. Add any fields you want to describe the struct’s state.

The following example defines a structure for a rectangle called rect, sets initial values for its

height and width properties, and then displays them to the user.

Code Listing 29

 // pointer to a
 p := &a
 // read a via the pointer
 fmt.Printf("Value of a is: %d\n", *p)
 // set a via the pointer
 *p = 21
 // display the new value of a
 fmt.Printf("New value of a is: %d\n", a)

 // pointer to b
 p = &b
 // read b via the pointer
 fmt.Printf("Value of b is: %d\n", *p)
 // add 10 to b via its pointer
 *p = *p + 10
 // display the new value of b
 fmt.Printf("New value of b is: %d\n", b)
}

package main

import (
 "fmt"
)

type rect struct {
 height int

67

Height: 12

Width: 20

Note how we access the fields on the struct using dot notation in the form:

struct_name.field

What this is really doing behind the scenes is de-referencing the pointer to the struct for us

and then accessing its field, so if we really wanted to, we could write:

(*struct_name).field

If you don’t explicitly assign values to a field, Go automatically assigns the default value for the
data type.

 Note: As we saw in Chapter 3, if you capitalize the first letter of a variable name,
that variable becomes global. The same concept applies to fields within structures.
Other programming languages use keywords like public, private, package,
protected, and so on to allow the developer to define the visibility and accessibility
of variables within different contexts. Go's approach is nothing short of genius, in my
humble opinion!

We used the following syntax in Code Listing 29 to define the struct and initialize its fields:

r := rect{height: 12, width: 20}

To get a pointer to the actual structure data in memory, use the & operator:

myRectangle := &rect{

 height: 12,

 width: 20,

}

If we know the order the fields are defined in, we can assign values to those fields in the
following way:

r := rect{12, 20}

We can also assign field values using dot notation:

 width int
}

func main() {
 r := rect{height: 12, width: 20}
 fmt.Printf("Height: %d\nWidth: %d\n", r.height, r.width)
}

68

r.height = 12

r.width = 20

To create an instance of a structure and return a pointer to it, use the following syntax:

var myRectangle *rect

myRectangle = new(rect)

This is quite verbose, so Go provides a shorthand:

myRectangle := new(rect)

Methods

We create methods in Go by defining a function and then binding it to a struct. We need to

decide whether our method needs to act on the actual structure itself or just a copy of it. For
example, if our method needs to change the values of fields within the structure, we would need
access to the original structure because if we worked on a copy, the original field values would
be unaffected by any change. Another good reason for using a pointer is in case the structure is
large and would therefore be expensive to copy.

Let’s create a method that calculates the area of our rectangle and binds it to the rect

structure:

Code Listing 30

package main

import (
 "fmt"
)

type rect struct {
 height int
 width int
}

func main() {
 r := rect{height: 12, width: 20}
 fmt.Printf("Height: %d\n", r.height)
 fmt.Printf("Width: %d\n", r.width)
 fmt.Printf("Area: %d\n", r.area())
}

func (r rect) area() int {
 h := r.height
 w := r.width

69

Height: 12

Width: 20

Area: 240

The binding occurs by specifying the receiver of the method in the parentheses immediately
following the func keyword:

func (r rect) area() int {

 // Code to calculate the area

}

In this instance, we don’t need to modify the field values, so we are working on a copy of the
structure rather than the original.

Let’s create another function called double() that doubles the dimensions of our rectangle.

Code Listing 31

 return h * w
}

package main

import (
 "fmt"
)

type rect struct {
 height int
 width int
}

func main() {
 r := rect{height: 12, width: 20}
 fmt.Printf("Height: %d\n", r.height)
 fmt.Printf("Width: %d\n", r.width)
 fmt.Printf("Area: %d\n", r.area())

 r.double()
 fmt.Printf("Height: %d\n", r.height)
 fmt.Printf("Width: %d\n", r.width)
 fmt.Printf("Area: %d\n", r.area())

}

func (r rect) area() int {
 h := r.height

70

Height: 12

Width: 20

Area: 240

Double it!

Height: 12

Width: 20

Area: 240

That’s not what we intended! In this case, the fact that we are working on a copy of the structure
and not the original renders our function virtually useless. Let’s amend the double() method so

that the receiver is a pointer to the original rect structure.

Code Listing 32

 w := r.width
 return h * w
}

func (r rect) double() {
 r.height *= 2
 r.width *=2
}

package main

import (
 "fmt"
)

type rect struct {
 height int
 width int
}

func main() {
 r := rect{height: 12, width: 20}
 fmt.Printf("Height: %d\n", r.height)
 fmt.Printf("Width: %d\n", r.width)
 fmt.Printf("Area: %d\n", r.area())

 fmt.Printf("\nDouble it!\n\n")
 r.double()

71

Height: 12

Width: 20

Area: 240

Double it!

Height: 24

Width: 40

Area: 960

The double() method is now working as intended.

Embedded types

Types can contain other types. When you embed one type in another, the embedded type is
anonymous: you don’t give it a name. Instead, you refer to it via the name of its type.

For example, here is a type that describes a sale discount:

type Discount struct {

 percent float32

 promotionId string

}

 fmt.Printf("Height: %d\n", r.height)
 fmt.Printf("Width: %d\n", r.width)
 fmt.Printf("Area: %d\n", r.area())

}

func (r rect) area() int {
 h := r.height
 w := r.width
 return h * w
}

func (r *rect) double() {
 r.height *= 2
 r.width *=2
}

72

Here is another type that reflects a special discount with extra off the discounted sale price:

type ManagersSpecial struct {

 Discount // The embedded type

 extraoff float32

}

We can instantiate these types as follows:

januarySale := Discount{15.00, "January"}

managerSpecial := ManagersSpecial{januarySale, 10.00}

We can then refer to the fields on the embedded type using the type name as follows:

managerSpecial.Discount.percent // "15.00

managerSpecial.Discount.promotionId // "January"

If we bind a method to Discount, we can invoke it using the same syntax:

managerSpecial.Discount.someMethod(someParameter)

The following sample shows this concept in action:

Code Listing 33

package main

import (
 "fmt"
)

type Discount struct {
 percent float32
 promotionId string
}

type ManagersSpecial struct {
 Discount
 extraoff float32
}

func main() {

 normalPrice := float32(99.99)

 januarySale := Discount{15.00, "January"}
 managerSpecial := ManagersSpecial{januarySale, 10.00}

73

Original price: $99.99

Discount percentage: 15.00

Discounted price: $84.99

Manager's special: $74.99

Interfaces

A Go interface is a contract that defines the methods that any type using the interface must
implement and expose.

For example, say we have defined types for different vehicles: a car, a bicycle, and a
motorcycle. Each of these vehicles can accelerate, decelerate, and brake. The actual details of
how each of these actions is achieved is the responsibility of the type, but the fact that they
must all accommodate these behaviors can be enforced by an interface.

The benefit of this approach is that once a number of types implement the same interface, they
can all be regarded as being equivalent in some way. To continue our example, even though we
have cars, cycles, and motorcycles, if our program simply wants to drive them, we can use the
same drive() function, pass in any vehicle, and drive() will call the appropriate type-specific

accelerate(), decelerate(), and brake() methods.

This is really useful, but is hard to explain without a concrete example, so let’s create a very
simple (and rather contrived) example to demonstrate the concept.

I’m going to define two types: one for animals and one for people. The Animal class has a

sound field, and the Person class has a name field. Both types need to be able to say hello. The

person will introduce him or herself, and the animal will make an appropriate noise depending
on what type of animal it is.

 discountedPrice := januarySale.Calculate(normalPrice)
 managerDiscount := managerSpecial.Calculate(normalPrice)

 fmt.Printf("Original price: $%4.2f\n", normalPrice)
 fmt.Printf("Discount percentage: %2.2f\n",
 januarySale.percent)
 fmt.Printf("Discounted price: $%4.2f\n", discountedPrice)
 fmt.Printf("Manager's special: $%4.2f\n", managerDiscount)
}

func (d Discount) Calculate(originalPrice float32) float32 {
 return originalPrice - (originalPrice / 100 * d.percent)
}

func (ms ManagersSpecial) Calculate(originalPrice float32) float32 {
 return ms.Discount.Calculate(originalPrice) - ms.extraoff
}

74

In order to enforce this behavior, I’m going to require that both types have a method called
sayHi(). I can do this by defining an interface called Greeter that specifies the method

signature of sayHi(). Any type that implements the interface must have a sayHi() method with

the exact same signature.

type Greeter interface {

 sayHi() string

}

type Person struct {

 Name string

}

type Animal struct {

 Sound string

}

func (p Person) SayHi() string {

 return "Hello! My name is " + p.Name

}

func (a Animal) SayHi() string {

 return a.Sound

}

I can then create a function called greet() that accepts any type that implements the Greeter

interface (a person or an animal) and calls the appropriate sayHi() method for the type:

func greet(i Greeter) {

 fmt.Println(i.SayHi())

}

Even though we’re supplying different types, the greet() function can deal with all of them.

This is extremely powerful.

Here is the full code and output:

Code Listing 34

package main

import (
 "fmt"
)

75

Person :

Hello! My name is Bob Smith

Animal :

Woof! Woof!

type Person struct {
 Name string
}

type Animal struct {
 Sound string
}

type Greeter interface {
 SayHi() string
}

// this method is specific to the Person class
func (p Person) SayHi() string {
 return "Hello! My name is " + p.Name
}

// this method is specific to the Animal class
func (a Animal) SayHi() string {
 return a.Sound
}

/* this method can be called on any type that
implements the Greeter interface */
func greet(i Greeter) {
 fmt.Println(i.SayHi())
}

func main() {
 man := Person{Name: "Bob Smith"}
 dog := Animal{Sound: "Woof! Woof!"}

 fmt.Println("\nPerson : ")
 greet(man)

 fmt.Println("\nAnimal : ")
 greet(dog)

}

76

The empty interface

The empty interface looks like this:

interface {}

It’s an interface that all types implement—basically because there is nothing to implement!
Other languages like .NET and Java refer to this type of interface as a “marker interface.”

This might seem like nonsense, but it can actually be very useful, and in fact it is used widely in
the Go standard libraries. The reason it is useful is that it gives you a way to express an
unknown type that is determined at runtime.

Because Go is a statically typed language, the compiler complains very loudly if any variable
has not been assigned a type, so the empty interface helps us get around this restriction.

Think of interface{} as being a bit like Object in other languages.

Here is an example of how we might use the empty interface.

Code Listing 35

42 is an integer

3.140000 is a 64-bit float

package main

import (
 "fmt"
)

func main() {
 displayType(42)
 displayType(3.14)

 displayType("ここでは文字列です")

}

func displayType(i interface{}) {
 switch theType := i.(type) {
 case int:
 fmt.Printf("%d is an integer\n", theType)
 case float64:
 fmt.Printf("%f is a 64-bit float\n", theType)
 case string:
 fmt.Printf("%s is a string\n", theType)
 default:
 fmt.Printf("I don't know what %v is\n", theType)
 }
}

77

ここでは文字列です is a string

The function displayType() accepts any data type (because of the empty interface

parameter). It then uses a type switch to return the actual type of the parameter that was
passed into it.

Type assertion

If you have used the empty interface to access a value of an unknown data type and want to
convert it to a known type so that you can work with it, you cannot simply use a type conversion
because the empty interface is not a type. Instead, you must use a type assertion.

A type assertion takes the following form:

var anything interface{} = "something"

aString := anything.(string)

Code Listing 36

something

If Go is unable to perform the conversion, it will “panic.”

Code Listing 37

package main

import (
 "fmt"
)

func main() {
 var anything interface{} = "something"
 aString := anything.(string)
 fmt.Println(aString)
}

package main

import (
 "fmt"
)

func main() {
 var anything interface{} = "something"
 aInt := anything.(int)
 fmt.Println(aInt)
}

78

panic: interface conversion: interface is string, not int

goroutine 1 [running]:

panic(0xda640, 0xc820010180)

 /usr/local/go/src/runtime/panic.go:464 +0x3e6

main.main()

 .../src/hello/main.go:9 +0xa8

exit status 2

To protect against this eventuality, take advantage of the fact that the assertion can pass back
two parameters: one containing the converted type and another indicating success or failure.
You can then test the second parameter and gracefully deal with any errors.

Code Listing 38

Cannot turn input into an integer

package main

import (
 "fmt"
)

func main() {
 var anything interface{} = "something"
 aInt, ok := anything.(int)
 if !ok {
 fmt.Println("Cannot turn input into an integer")
 } else {
 fmt.Println(aInt)
 }
}

79

Chapter 9 Concurrency

One of Go’s most exciting features is its fantastic support for concurrency, which allows
programs written in the language to scale massively. In this chapter, we’ll define concurrency
and look at the two main features of the language that make concurrent programming easy in
Go: goroutines and gochannels.

Processes, threads, and concurrency

When a program executes, the operating system creates a process for it to run in. This process
acts as a container for the program and all the resources it uses while it executes. These
resources include things like the memory the program accesses, any devices it uses, the file
handles it uses for I/O, and threads.

A thread is the smallest unit of processing that can be performed in an operating system. A
single process can contain multiple threads. Whereas a program that is single-threaded
executes each of its instructions sequentially until the last instruction is reached, one with
multiple threads allows multiple operations to run seemingly at the same time. For example,
consider a program that allows you to watch a video while downloading it.

This delegation of operations to multiple threads of execution is known as concurrency. The
dictionary definition of concurrent is “occurring or existing simultaneously,” and concurrency in
computer programming means exactly the same thing: the ability of a program to use multiple
threads in order to get more done in less time.

Goroutines

A goroutine is a method or function that can run concurrently with other functions. Note that any
Go program automatically consists of one goroutine: the program itself.

To create a new goroutine, we need only to prefix the call to a method or function with the go

keyword:

go myFunction(parameter)

Because goroutines are extremely lightweight, there is nothing to stop us from creating
hundreds or even thousands of them. Each executes and immediately returns control to the
next line in the program without the program waiting for whatever function was called in the
goroutine to complete.

Consider the following example:

80

Code Listing 39

This program has a function called message() that accepts a string value and prints it out five

times. The message() function is called once as a goroutine running in its own thread, and once

as normal within the main program thread.

When you run the program, you can see the two different threads competing to display their
results:

goroutine

normal

goroutine

normal

goroutine

normal

normal

goroutine

goroutine

normal

The order in which the threads are processed is indeterminate, so when you run the program
again, you might get a completely different result:

normal

goroutine

goroutine

package main

import (
 "fmt"
 "time"
)

func message(s string) {
 for i := 0; i < 5; i++ {
 time.Sleep(100 * time.Millisecond)
 fmt.Println(s)
 }
}

func main() {
 go message("goroutine")
 message("normal")
}

81

normal

normal

goroutine

goroutine

normal

normal

goroutine

Note the use of the Go standard library time package to introduce a delay in the message()

function. Without this delay, the program would call the goroutine and immediately drop down
into the standard function call, and the program would terminate before the goroutine had a
chance to finish.

Code Listing 40

normal

normal

normal

normal

normal

Gochannels

Gochannels are the plumbing that allow different goroutines to communicate with each other.
You can use a channel to send a value from one goroutine and receive it in another.

package main

import (
 "fmt"
)

func message(s string) {
 for i := 0; i < 5; i++ {
 fmt.Println(s)
 }
}

func main() {
 go message("goroutine")
 message("normal")
}

82

You must create a channel before you attempt to use it. You create a channel with make() like

you do with slices and maps. The syntax to create a channel is as follows:

myChannel := make(chan type)

A channel can only accept values of any one type, so you need to specify the type when
creating it.

You can put a value into the channel with the following syntax:

myChannel <- value

You retrieve a value from the channel like so:

myVariable: <- myChannel

By default, sends and receives are blocked until the sender and receiver are both ready. This
allows goroutines to synchronize without explicit locks or condition variables.

Let’s illustrate the use of channels with a programmatic implementation of a “numbers station.”

A numbers station is a peculiar artifact of the Cold War. During this period, shortwave radio
enthusiasts started to notice bizarre radio broadcasts. They would start with a weird melody or a
series of beeps, and then a strange woman’s or a child’s voice would start announcing a series
of seemingly random numbers, presumably representing some unknown code to communicate
with agents in the field.

Weird, and not a little creepy.

Anyway, we’ll create a function that generates a series of these numbers and drops them into a
channel, which our program can then access.

Code Listing 41

package main

import (
 "fmt"
 "math/rand"
 "time"
)

func broadcast(c chan int) {
 // infinite loop to create random numbers
 for {
 /* generate a random number 0-999
 and put it into the channel */
 c <- rand.Intn(999)
 }
}

83

878 636 407 983 895 735 520 998 904 150 212 538 750 362 436 215 630 506 20
914 272 207 266 298 135 565 43 964 942 705 562 249 734 203 840 152 357 718 84
189 871 256 ...

Let’s break that down.

The broadcast() function accepts an integer channel c as a parameter. It then creates an

infinite number of random integers between zero and 999 by using another Go package we
haven’t seen yet: math/rnd, and drops those into the channel.

In main(), we’re creating a new integer channel called numbersStation. We then call

broadcast() as a goroutine in a separate thread, which then continually generates random

numbers and drops them into the channel.

Our for loop accesses the channel and displays each of the random numbers generated by the

broadcast one at a time, with a one-second delay between each. This all happens so quickly
that if we didn’t have a delay, the output would just be a blur of numbers—far too many for our
number station operator to read out.

Let’s create a slightly more useful example—one that creates new account numbers for a
fictitious banking application. The account number will be eight digits, starting from 30000001.

Code Listing 42

func main() {
 numbersStation := make(chan int)

 // execute broadcast in a separate thread
 go broadcast(numbersStation)

 // retrieve values from the channel
 for num := range numbersStation {
 // delay for artistic effect only
 time.Sleep(1000 * time.Millisecond)
 fmt.Printf("%d ", num)
 }
}

package main

import (
 "fmt"
)

func generateAccountNumber(accountNumberChannel chan int) {
 // internal variable to store last generated account number
 var accountNumber int
 accountNumber = 30000001

84

SMITH: 30000001

SINGH: 30000002

JONES: 30000003

LOPEZ: 30000004

CLARK: 30000005

If we modify the code in the previous listing so that we close the channel after five account
numbers have been requested, then any subsequent read of the channel will return nil. We

can check for this eventuality using the “comma OK” syntax.

Code Listing 43

 for {
 accountNumberChannel <- accountNumber
 // increment the account number by 1
 accountNumber += 1
 }
}

func main() {
 accountNumberChannel := make(chan int)
 // start the goroutine that generates account numbers
 go generateAccountNumber(accountNumberChannel)

 fmt.Printf("SMITH: %d\n", <-accountNumberChannel)
 fmt.Printf("SINGH: %d\n", <-accountNumberChannel)
 fmt.Printf("JONES: %d\n", <-accountNumberChannel)
 fmt.Printf("LOPEZ: %d\n", <-accountNumberChannel)
 fmt.Printf("CLARK: %d\n", <-accountNumberChannel)
}

package main

import (
 "fmt"
)

func generateAccountNumber(accountNumberChannel chan int) {
 // internal variable to store last generated account number
 var accountNumber int
 accountNumber = 30000001

 for {
 // close the channel after 5 numbers are requested
 if accountNumber > 30000005 {

85

SMITH: 30000001

SINGH: 30000002

JONES: 30000003

LOPEZ: 30000004

CLARK: 30000005

ALLEN: No number available

Buffered channels

In the examples in Code Listings 42 and 43, the accountNumberChannel can be accessed

anywhere in the program to generate the next account number in the sequence. The
generateAccountNumber() function will not write a new account number to the channel until

the existing value has been read by the program. This is because, by default, channels are un-
buffered and are therefore synchronous in execution.

 close(accountNumberChannel)
 return
 }
 accountNumberChannel <- accountNumber
 // increment the account number by 1
 accountNumber += 1
 }
}

func main() {
 accountNumberChannel := make(chan int)
 // start the goroutine that generates account numbers
 go generateAccountNumber(accountNumberChannel)

 // slice containing new customer names
 newCustomers := []string{"SMITH", "SINGH", "JONES", "LOPEZ",
 "CLARK", "ALLEN"}

 // get a new account number for each customer
 for _, newCustomer := range newCustomers {
 // is there anything to retrieve from the channel?
 accnum, ok := <-accountNumberChannel
 if !ok {
 fmt.Printf("%s: No number available\n",
 newCustomer)
 } else {
 fmt.Printf("%s: %d\n", newCustomer, accnum)
 }
 }
}

86

Compare the examples in Code Listings 42 and 43 to that in Code Listing 41. In Code Listing
41, there was no attempt to read a value from the channel (using the myVariable := <-
myChannel syntax). No blocking occurs, and therefore the program continues to generate

random numbers and add them to the channel.

If we want, we can buffer the channel, allowing for asynchronous execution. We do this by
specifying a capacity for the channel as a second parameter:

myChannel := make(chan type, capacity)

Let’s compare the operation of unbuffered and buffered channels. First, the unbuffered channel:

Code Listing 44

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:

main.main()

 .../src/hello/main.go:10 +0x60

exit status 2

The program terminates with an error because the channel is unbuffered, and we’re attempting
to put a value into the channel when there is nothing in the program to read from it.

If we create a buffered channel with a capacity of 1, we can add a single value to it without any
issues:

Code Listing 45

package main

import (
 "fmt"
)

func main() {
 // un-buffered channel
 c := make(chan int)
 c <- 3
 fmt.Println("OK.")
}

package main

import (
 "fmt"
)

87

OK.

Writing to a buffered channel does not block if there is sufficient capacity in the channel. If we
attempt to put more values in the channel than we have capacity for, we will get the same error
as we saw previously:

Code Listing 46

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:

main.main()

 .../src/hello/main.go:13 +0xf1

exit status 2

Communicating on multiple channels

It is unlikely that a real-life Go program will rely upon a single channel. More typically, there will
be multiple channels, and your program will try to coordinate reads and writes across all those
channels.

func main() {
 // buffered channel, capacity 1
 c := make(chan int, 1)
 c <- 3
 fmt.Println("OK.")
}

package main

import (
 "fmt"
)

func main() {
 // buffered channel, capacity 3
 c := make(chan int, 3)
 c <- 3
 c <- 4
 c <- 5
 c <- 6
 fmt.Println("OK.")
}

88

Consider this alternative implementation of our numbers station program. The program listens
on two channels: one that generates a sequence of numbers, and the other that waits until it
receives a message telling it to stop transmitting. The broadcast() function uses a select
statement to determine if anything is listening on the nsChannel (in which case it generates the

next number in the sequence) or if it has received a message on the cChannel telling it to

terminate (in which case it terminates the transmission).

select {

case nsChannel <- numbers[i]:

 i += 1

 if i == len(numbers) {

 i = 0

 }

case <-cChannel:

 cChannel <- true

 return

}

I have commented liberally throughout this program. See if you can work out what’s going on.

Code Listing 47

package main

import (
 "fmt"
 "time"
)

func broadcast(nsChannel chan int, cChannel chan bool) {

 numbers := []int{
 101,
 102,
 103,
 104,
 105,
 106,
 107,
 108,
 109,
 110,
 }
 i := 0
 for {

89

 // see which channel has items
 select {
 /* if the numbersChannel is being listened to,
 take each number sequentially from the
 slice and put it into the channel */
 case nsChannel <- numbers[i]:
 i += 1
 /* if we've reached the last number and
 the channel is still being listened to,
 start reading from the beginning of the
 slice again */
 if i == len(numbers) {
 i = 0
 }
 /* if we receive a message on the
 complete channel, we stop transmitting */
 case <-cChannel:
 cChannel <- true
 return
 }
 }
}

func main() {
 numbersStation := make(chan int)
 completeChannel := make(chan bool)

 // execute broadcast in a separate thread
 go broadcast(numbersStation, completeChannel)

 // get 100 numbers from the numbersStation channel
 for i := 0; i < 100; i++ {
 // delay for artistic effect only
 time.Sleep(100 * time.Millisecond)
 // retrieve values from the channel
 fmt.Printf("%d ", <-numbersStation)
 }

 /* once we have received 100 numbers,
 send a message on completeChannel
 to tell it to stop transmitting */
 completeChannel <- true

 /* don't terminate the program until
 we receive a message on the completeChannel.
 Discard the response. */
 <-completeChannel

 /* we only get to here if we received a

90

101 102 103 104 105 106 107 108 109 110 101 102 103 104 105 106 107 108 109
110 101 102 103 104 105 106 107 108 109 110 101 102 103 104 105 106 107 108
109 110 101 102 103 104 105 106 107 108 109 110 101 102 103 104 105 106 107
108 109 110 101 102 103 104 105 106 107 108 109 110 101 102 103 104 105 106
107 108 109 110 101 102 103 104 105 106 107 108 109 110 101 102 103 104 105
106 107 108 109 110 Transmission Complete.

Bringing it all together

Here is another example of using goroutines and channels, but this one brings together a
number of concepts that we have covered in this book. Some of the code here is not
immediately obvious, so take the time to work through it, as doing so will help you to fully
assimilate some of the features of Go you have learned so far.

Examine the following code and then read the explanation that follows.

Code Listing 48

 message on completeChannel */
 fmt.Println("Transmission Complete.")
}

package main

import (
 "fmt"
 "io/ioutil"
 "log"
 "net/http"
 "sort"
)

type WebPage struct {
 URL string
 Size int
}

type WebPages []WebPage

// implementing the sort.Interface interface in WebPages
func (slice WebPages) Len() int {
 return len(slice)
}

func (slice WebPages) Less(i, j int) bool {
 // Sort of size of response in descending order
 return slice[i].Size > slice[j].Size

91

}

func (slice WebPages) Swap(i, j int) {
 slice[i], slice[j] = slice[j], slice[i]
}

// method for adding a new WebPage element to WebPages
func (wp *WebPages) addElement(page WebPage) {
 *wp = append(*wp, page)
}

// called as a goroutine to retrieve the length of each webpage
func getWebPageLength(url string, resultsChannel chan WebPage) {
 res, err := http.Get(url)
 if err != nil {
 log.Fatal(err)
 }
 defer res.Body.Close()

 // get the size of the response body
 size, err := ioutil.ReadAll(res.Body)
 if err != nil {
 log.Fatal(err)
 }

 // populate the WebPage struct and add it to the channel
 var page WebPage
 page.URL = url
 page.Size = len(size)
 resultsChannel <- page
}

func main() {
 urls := []string{
 "http://www.syncfusion.com",
 "http://www.google.com",
 "http://www.microsoft.com",
 "http://www.apple.com",
 "http://www.golang.org",
 }

 // create a channel
 resultsChannel := make(chan WebPage)

 // call a goroutine to read each webpage simultaneously
 for _, url := range urls {
 /* initiate a new goroutine for each URL
 so that we can analyze them concurrently */
 go getWebPageLength(url, resultsChannel)

92

1. http://www.syncfusion.com: 108794 bytes.

2. http://www.microsoft.com: 79331 bytes.

3. http://www.apple.com: 31204 bytes.

4. http://www.google.com: 19850 bytes.

5. http://www.golang.org: 7856 bytes.

The program examines the length of five webpages and lists them in order of largest to
smallest. It executes a goroutine for each webpage so that we don’t have to wait to download
one webpage before we start on the next. The goroutine pushes the result of each analysis onto
a channel, resultsChannel.

First, let’s see what’s new. To get the length of the webpages, we’re using Go’s net/http

package. To retrieve the webpage, we call http.Get(), passing in the URL of the page we’re

interested in, and we examine the body of the response. If anything goes wrong, we use Go’s
log package to report a fatal error condition.

Once we’re done with the response body, we must close it, and here we’re using a defer to

res.Body.close(). The defer statement pushes a function call onto a list that Go maintains

internally. The function deferred only gets called when the surrounding function completes. You
often see defer used to simplify functions that do some sort of cleanup.

 res, err := http.Get(url)

 if err != nil {

 log.Fatal(err)

 }

 defer res.Body.Close()

 }

 // store each WebPage result in WebPages
 results := new(WebPages)
 for range urls {
 result := <-resultsChannel
 results.addElement(result)
 }

 // sort using the implementation of sort.Interface in WebPages
 sort.Sort(results)

 // display the results to the user
 for i, page := range *results {
 fmt.Printf("%d. %s: %d bytes.\n", i+1, page.URL,
 page.Size)
 }

}

93

With the body of the response, we can get its length in bytes by reading it into memory with the
ioutil package’s ReadAll() method, which returns the number of bytes read:

 // get the size of the response body

 size, err := ioutil.ReadAll(res.Body)

 if err != nil {

 log.Fatal(err)

 }

Everything else in the program builds on what we have learned so far.

In order to store the results for later display to the user, we are creating a couple of custom
types. One is called WebPage and contains the URL and the length (in bytes) of the response.

The other is called WebPages and is a slice that contains five instances of WebPage, one for each

webpage.

Because we want to order the results by size, and the size information is a field buried within
our WebPage struct, we’ve implemented the sort.Interface interface in the WebPages type. To

do that, we have included the following methods in WebPages:

func (slice WebPages) Len() int {

 return len(slice)

}

func (slice WebPages) Less(i, j int) bool {

 return slice[i].Size > slice[j].Size;

}

func (slice WebPages) Swap(i, j int) {

 slice[i], slice[j] = slice[j], slice[i]

}

Because we have defined our own type WebPages, we have lost the ability to append() items to

it, which we would keep if we were using a normal slice. So we have created a method on
WebPages that allows us to add a WebPage to the collection when we retrieve it from the

resultsChannel. Because we are directly changing the contents of WebPages, we must use a

pointer to the receiver in our method declaration so that we are not simply working on a copy of
of it.

func (wp *WebPages) addElement(page WebPage) {

 *wp = append(*wp, page)

}

94

Once we have populated WebPages with the results of reading the responses from all five

websites, we call sort.Sort() to retrieve each of the results in size order from largest to

smallest and display them to the user:

sort.Sort(results)

for i, page := range *results {

 fmt.Printf("%d. %s: %d bytes.\n", i, page.URL, page.Size)

}

95

Chapter 10 Standard Packages

One of the cardinal rules of programming is to reuse code whenever and wherever possible.
Why spend time writing code for everyday situations when a bunch of crazily clever people have
already done so (and have seen the fruits of their labors tried and tested in the wild)?

So let’s have a look at a few of the standard packages that ship with Go. These cover common
scenarios that programmers face all the time.

Bear in mind, however, that this is only the tip of the iceberg. I can’t hope to cover all the
standard packages in Go, or even all features from specific packages. To discover more, use
your old friend godoc package_name.

The net/http package

We saw some of the capabilities of the net/http package in the previous chapter. However,

net/http provides a full HTTP client and server implementation. For example, creating a

working web server takes just a few lines of code:

Code Listing 49

package main

import (
 "fmt"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:])
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

96

Figure 7: A Working Web Server in a Few Lines of Go

There’s much, much more to net/http. Look out for my forthcoming book, Go Web

Development Succinctly, for a deep dive into net/http.

You can also see more about the net/http package here.

Input and output

A very common requirement in any language is the ability to read from and write to files. Go
covers this with the io and io/util packages on the I/O end of things, and the os package to

work with files in an operating system-specific manner and provide other operating system
functionality.

In fact, you can read and write files with just the functions in the os package, but io and

io/util provide a nice wrapper around these for easy use. Augment these with bufio

functions for buffered reads and writes.

See the following links for more information:

• io
• io/util
• bufio
• os

Code Listing 50

package main

import (
 "io/ioutil"
 "os"
)

func main() {

 // Write a new file from a byte string
 name := "test.txt"
 txt := []byte("Not much in this file.")
 if err := ioutil.WriteFile(name, txt, 0755); err != nil {

https://golang.org/pkg/net/http/
https://golang.org/pkg/io/
https://golang.org/pkg/io/ioutil/
https://golang.org/pkg/bufio/
https://golang.org/pkg/os/

97

 Note: A common use of panic() is to abort if a function returns an error value
that we cannot (or, in this example, will not) handle.

Strings

Programmers manipulate strings all the time. We saw some of the things we could do with
strings in Chapter 5, but for a heap of new capabilities, look at the strings package.

Code Listing 51

 panic(err)
 }

 // Read the contents of a file into a []byte
 results, err := ioutil.ReadFile(name)
 if err != nil {
 panic(err)
 }
 println(string(results))

 // Or use os.Open(filename)
 reader, err := os.Open(name)
 if err != nil {
 panic(err)
 }

 results, err = ioutil.ReadAll(reader)
 if err != nil {
 panic(err)
 }
 reader.Close()
 println(string(results))
}

package main

import (
 "fmt"
 "strings"
)

func main() {
 fmt.Println(
 // does "test" contain "es"?
 strings.Contains("test", "es"),

98

true true true 2 1 input/output GollyGollyGollyGollyGollyGolly xxxx [a b c d
e] test TEST

See more of the strings package here.

Errors

We’ve already seen error messages in Go, but what we don’t know yet is that we can create our
own errors using the New() function in the errors package.

The fmt package formats an error message by implicitly calling its Error() method, which

returns a string.

 // does "test" begin with "te"?
 strings.HasPrefix("test", "te"),

 // does "test" end in "st"?
 strings.HasSuffix("test", "st"),

 // how many times is "t" in test?
 strings.Count("test", "t"),

 // at what position is "e" in "test"?
 strings.Index("test", "e"),

 // join "input" and "output" with "/"
 strings.Join([]string{"input", "output"}, "/"),

 // repeat "Golly" 6 times
 strings.Repeat("Golly", 6),

 /* replace "xxxx" with the first two
 non-overlapping instances of "a" replaced by "b" */
 strings.Replace("xxxx", "a", "b", 2),

 /* put "a-b-c-d-e" into a slice using
 "-" as a delimiter */
 strings.Split("a-b-c-d-e", "-"),

 // put "TEST" in lower case
 strings.ToLower("TEST"),

 // put "TEST" in upper case
 strings.ToUpper("test"),
)
}

https://golang.org/pkg/strings/

99

Code Listing 52

error message

See more about the errors package here.

Containers

If you come to Go from a language like Java, you might be surprised by the limited number of
composite types. In vanilla Go, we have only maps, slices, and channels.

If none of these are suitable for your purposes, check out the container package, which

introduces three more containers:

• list: an implementation of a doubly linked list that uses the empty interface for
values

• ring: an implementation of circular “list”
• heap: an implementation of a “mini heap” in which each node is the “minimum”

element in its sub-tree

Code Listing 53

package main

import (
 "errors"
 "fmt"
)

func main() {
 err := errors.New("error message")
 fmt.Println(err)
}

package main

import (
 "container/heap"
 "container/list"
 "container/ring"
 "fmt"
)

// following are for container/heap
type OrderedNums []int

func (h OrderedNums) Len() int {
 return len(h)

https://golang.org/pkg/errors/

100

}
func (h OrderedNums) Less(i, j int) bool {
 return h[i] < h[j]
}
func (h OrderedNums) Swap(i, j int) {
 h[i], h[j] = h[j], h[i]
}
func (h *OrderedNums) Push(x interface{}) {
 *h = append(*h, x.(int))
}
func (h *OrderedNums) Pop() interface{} {
 old := *h
 n := len(old) - 1
 x := old[n]
 *h = old[:n]
 return x
}
// end declarations for container/heap

func main() {
 // *** container/list ***
 l := list.New()
 e0 := l.PushBack(42)
 e1 := l.PushFront(11)
 e2 := l.PushBack(19)
 l.InsertBefore(7, e0)
 l.InsertAfter(254, e1)
 l.InsertAfter(4987, e2)

 fmt.Println("*** LIST ***")
 fmt.Println("-- Step 1:")
 for e := l.Front(); e != nil; e = e.Next() {
 fmt.Printf("%d ", e.Value.(int))
 }
 fmt.Printf("\n")

 l.MoveToFront(e2)
 l.MoveToBack(e1)
 l.Remove(e0)

 fmt.Println("-- Step 2:")
 for e := l.Front(); e != nil; e = e.Next() {
 fmt.Printf("%d ", e.Value.(int))
 }
 fmt.Printf("\n")

 // *** container/ring ***
 // create the ring and populate it
 blake := []string{"the", "invisible", "worm"}

101

*** LIST ***

-- Step 1:

11 254 7 42 19 4987

-- Step 2:

19 254 7 4987 11

*** RING ***

worm

the

invisible

*** HEAP ***

min: 23

 r := ring.New(len(blake))
 for i := 0; i < r.Len(); i++ {
 r.Value = blake[i]
 r = r.Next()
 }

 // move (2 % r.Len())=1 elements forward in the ring
 r = r.Move(2)

 fmt.Printf("\n*** RING ***\n")
 // print all the ring values with ring.Do()
 r.Do(func(x interface{}) {
 fmt.Printf("%s\n", x.(string))
 })

 // *** container/heap
 h := &OrderedNums{34, 24, 65, 77, 88, 23, 46, 93}

 heap.Init(h)

 fmt.Printf("\n*** HEAP ***\n")
 fmt.Printf("min: %d\n", (*h)[0])
 fmt.Printf("heap:\n")
 for h.Len() > 0 {
 fmt.Printf("%d ", heap.Pop(h))
 }
 fmt.Printf("\n")
}

102

heap:

23 24 34 46 65 77 88 93

See the following links for more information:

• list
• ring
• heap

Hashes and cryptography

Hashing involves applying a hashing algorithm to a data item, known as the hashing key, to
create a hash. Hashes are used so that searching a database can be done more efficiently,
data can be stored more securely, and data transmissions can be checked for tampering.
Programmers use hashes a lot.

Go provides support for hashes in its hash and crypto packages. The difference between the

hashes created by the hash package and those created by crypto is that the latter are much

harder to reverse and are therefore more suitable for sensitive data.

The hashing algorithms supported are adler32, crc32, crc64, and fnv.

Code Listing 54

package main

import (
 "fmt"
 "hash/crc32"
 "io"
 "os"
)

func hash(filename string) (uint32, error) {
 // open the file
 f, err := os.Open(filename)
 if err != nil {
 return 0, err
 }
 // always close files you have opened
 defer f.Close()

 // create the hashing algorithm
 h := crc32.NewIEEE()
 // copy the file into the hasher
 /* - copy() parameters are destination,source. It returns
 the number of bytes written, error */
 _, err = io.Copy(h, f)

https://golang.org/pkg/container/list/
https://golang.org/pkg/container/ring/
https://golang.org/pkg/container/heap/

103

2407730152 3829883431 Checksums don't match - files are different

See the following links for more information:

• hash
• crypto

 // did this work?
 if err != nil {
 // no - return zero and the error details
 return 0, err
 }
 // yes, return the checksum and a nil error
 return h.Sum32(), nil
}

func main() {
 // contents of file1.txt: "Have I been tampered with?"
 h1, err := hash("file1.txt")
 if err != nil {
 return
 }
 // contents of file2.txt: "I have been tampered with!"
 h2, err := hash("file2.txt")
 if err != nil {
 return
 }

 if h1 == h2 {
 fmt.Println(h1, h2, "Checksums match - files are
 identical")
 } else {
 fmt.Println(h1, h2, "Checksums don't match - files are
 different")
 }
}

https://golang.org/pkg/hash/
https://golang.org/pkg/crypto/

104

Chapter 11 Go Further

That brings us to the end of this e-book. I hope you found the information herein valuable, but
more than anything else, I hope that I’ve given you a real appetite to learn more about Go.

The best way to learn Go is to practice it. Think of some small applications you can build and
then build them. Use the documentation to find out about packages you think might help you,
then dig into them and discover how they really work.

Above all, if you only think you understand something you’ve written in Go, then you probably
don’t. Every time you write something, ask yourself if you could explain how it works in simple
terms to someone else. Better still, grab the nearest person and do just that. Go, like any other
language, rewards the inquisitive.

I found Dave Cheney’s blog very useful when I was first starting with Go. Dave is a programmer
and author from Sydney, Australia, and has been a Go contributor since 2011 and a maintainer
since 2012. His blog is a great source of news, tips, and tutorials, and his “Resources for New
Go Programmers” post was a great help to me.

I wish you well in all your Go programming endeavors. Feel free to connect with me at
mark@marklewin.com if there’s anything I can do to help you.

http://dave.cheney.net/resources-for-new-go-programmers
http://dave.cheney.net/resources-for-new-go-programmers
mailto:mark@marklewin.com

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Chapter 1 Welcome
	Who is this book for?
	Code examples
	Acknowledgements

	Chapter 2 Introducing Go
	Welcome to Go
	Slow builds
	Dependency management
	Static typing
	Concurrency
	Memory management
	Programmer consistency
	Tool chain
	Ease of learning

	What can I use Go for?

	Chapter 3 Let’s Go!
	The Golang website
	Your first Go program
	Setting up your machine
	Text editor
	The terminal
	The Go toolset

	The Go workspace
	Migrating “Hello, World!”
	Formatting Go source code
	Getting help with Go
	Documenting your own code

	Recommended Go tool: Golint

	Chapter 4 Variables, Constants, and Assignments
	Statically vs. dynamically typed languages
	Variable assignment
	Scope

	Chapter 5 Basic Data Types
	Numeric data types
	Integers
	Floating-point numbers
	Working with numeric data

	Booleans
	Strings
	Common string operations
	Concatenation
	Length
	Substrings
	Comparing strings

	Converting between numbers and strings

	Chapter 6 Control Structures
	Using if/else
	Looping with the for statement
	The switch statement

	Chapter 7 Arrays, Slices, and Maps
	Arrays
	Slices
	Maps

	Chapter 8 User-Defined Types
	A word on pointers
	Structs
	Methods
	Embedded types
	Interfaces
	The empty interface
	Type assertion

	Chapter 9 Concurrency
	Processes, threads, and concurrency
	Goroutines
	Gochannels
	Buffered channels
	Communicating on multiple channels

	Bringing it all together

	Chapter 10 Standard Packages
	The net/http package
	Input and output
	Strings
	Errors
	Containers
	Hashes and cryptography

	Chapter 11 Go Further

